机器视觉与卷积神经网络

根据2016年嵌入式视觉联盟进行的嵌入式视觉开发者调查2,77%的受访者表示目前正在或计划将要利用神经网络来处理分类工作。卷积神经网络并不是一个最近才出现的新概念。但是随着机器视觉的发展,卷积神经网络的应用也变得越来越重要了。

机器视觉卷积神经网络.jpg

早在1968年,加拿大神经生物学家David Hubel与瑞典神经生理学家Torsten Wiesel针对猫科动物视觉皮层进行了合作研究。视觉皮层是大脑皮层中主要负责将视觉数据处理成可用信息的部分。因此他们的目标是寻求如何从大脑接受到眼睛所采集的视觉图像信息(比如“我看到一个苹果”)中,获得目标对象有用信息方式的答案。这两名研究人员给猫演示不同走向的光条,在这一过程中发现视觉皮层的不同细胞会根据光条的走向被激活并做出反应。他们同时还发现复杂的光线图案,比如眼睛的形状,能够激活视觉皮层更深层部位的细胞。通过Hubel和Wiesel的努力,最终研发出一个能够演绎细胞激活和转发特定图像信息过程的模型。这也为计算机辅助图像分类建模奠定了基础。

30年后,法国计算机科学家Yann LeCun再次为Hubel和Wiesel所取得的成就所激励。他将视觉皮层功能的演绎叠加到一个演算中 -- 并从中成功创建出第一个卷积神经网络应用。

但即便如此,卷积神经网络在之后的很多年仍未能适用于实际操作和应用。其中最主要的原因是卷积神经网络需要投入大量的计算能力。使用串行技术处理数据的CPU处理器需要对数据记录挨个进行分析,意味着在这一网络能够最终应用于工作之前需要花费多年时间。

直到图形处理器单元(GPU)的出现,能够对数据实现并行处理,卷积神经网络才再一次被人们记起 -- 实际上近年来卷积神经网络的发展已经有了很大的起色。研究人员对卷积神经网络在笔记识别、医疗诊断、自动驾驶车辆预警系统,机器人物体识别以及生物识别技术应用方面取得的巨大成功感到欣慰。与其它竞争性学习技术相比,卷积神经网络在具有挑战性的应用中通常能够产生更好的结果。包括Google、IBM、微软和Facebook等大型企业所投资的数十亿美元巨额资金无不表现出其对这一领域的极大兴趣以及这一技术本身所具有的巨大潜力。

卷积神经网络不仅需要密集的处理器运作;同样对数据有极大需求。对卷积神经网络进行一次彻底培训,需要输入大量已经分类的图像数据。目前开发人员能够自由访问与此相关的数据库。最常用的图像数据库之一是ImageNet1。 它包含超过1400万幅分类图像。同时还有一系列针对具体分类问题而存在的专门数据库。比如,一个名为德国交通标志识别基准的数据库中就保存了5万余幅关于交通标志的图像。在这一例子中,卷积神经网络在2012年测试中取得了高达99.46%的成功率 -- 超过人工分类取得的98.84%。然而,在实践过程中,开发人员通常会面临高度专业化的分类问题,因此无法获取自己的图像数据库。但幸运的是,现在他们并不需要采集数百万张图像。一项被称为“迁移学习”的技术小窍门能够大大减少所需的图像数量,有时甚至只需要几百或几千幅图像。

目前已经开发出一系列适用于卷积神经网络的深度学习框架:包括Caffe,Torch和Theano在内的众多软件库都是专为这一课题而研发。2015年11月,Google甚至为此开放了内部机器学习软件TensorFlow,这一软件是从图像搜索到Google Photo等多种Google产品的基本组成部分。

嵌入式相机(Baslerdart BCON)通过柔性带状线材与具有FPGA(XilinxZynq)的处理单元相连接。图像数据的分类在FPGA上运行,因此可以进行实时计算。配置了FPGA的嵌入式视觉系统具备一系列能够完美适用于卷积神经网络的优点: FPGA能够执行卷积操作和网络所需的其它数学运算,以便对图像进行并行和高速分类任务。此设置提供实时图像分析和分类功能。

相比GPU,FPGA所需功耗更小,因此更适合低功耗的嵌入式系统。微软研究院最近发布的一份报告8显示,FPGA能够比GPU节省10倍功耗。

FPGA的大型片上存储和带宽使卷积神经网络能够对更高分辨率的图像进行实时分类。能够与FPGA直接连接的相机(如Basler's dart BCON相机)能够将数据直接传送到FPGA。这是处理器密集型应用程序(如卷积神经网络)的一个主要优势,因为通过USB传输的数据在到达FPGA之前必须通过不同的硬件组件(比如主机控制器)运行。实现相机与FPGA的直接连接能够保证更加高效的工作性能。

卷积神经网络在机器视觉应用领域中发挥越来越大的作用。2015年3进行的同一项调查显示,仅61%的受访者有此打算。2016年进行的该项调查还发现,86%的卷积神经网络被用于分类算法。这一结果表明,除了像Google或Facebook这样拥有庞大规模和丰富资源的大公司之外,普通的公司也能够自主研发基于卷积神经网络的产品或服务。

本文由朗锐智科编辑整理(www.lrist.com),如有侵权请联系本站。

时间: 2024-10-27 13:27:22

机器视觉与卷积神经网络的相关文章

卷积神经网络实战(可视化部分)——使用keras识别猫咪

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 作者介绍:Erik Reppel,coinbase公司程序员 作者博客:https://hackernoon.com/@erikreppel 作者twitter:https://twitter.com/programmer 在近些年,深度学习领域的卷积神经网络(CNNs或ConvNets)在各行各业为我们解决了大量的实际问题.但是对于大多数人来说,CNN仿佛戴上了神秘的面纱.我经常会想,要是能将神经网络的过程

卷积神经网络算法的简单实现

前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献.目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化. 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法.CNN在手写体

数字识别 matlab-lecun关于卷积神经网络的matlab代码怎么训练和测试,要改哪些?

问题描述 lecun关于卷积神经网络的matlab代码怎么训练和测试,要改哪些? 运行里面M文件出现1.错误使用 readMNIST (line 28)训练集的MNIST不见了.请从http://yann.lecun.com/exdb/mnist/下载它和投入./ MNIST文件夹 readMNIST的一部分: %检查MNIST数据集addpath('C:UsersfaschouDesktopCNNMNIST');%MNIST数据及其读取程序所在的目录path =' .MNISTtrain-im

一步一步学用Tensorflow构建卷积神经网络

0. 简介 在过去,我写的主要都是"传统类"的机器学习文章,如朴素贝叶斯分类.逻辑回归和Perceptron算法.在过去的一年中,我一直在研究深度学习技术,因此,我想和大家分享一下如何使用Tensorflow从头开始构建和训练卷积神经网络.这样,我们以后就可以将这个知识作为一个构建块来创造有趣的深度学习应用程序了. 为此,你需要安装Tensorflow(请参阅安装说明),你还应该对Python编程和卷积神经网络背后的理论有一个基本的了解.安装完Tensorflow之后,你可以在不依赖G

变形卷积核、可分离卷积?卷积神经网络中10大拍案叫绝的操作

CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 1. 卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在Alex

入门篇:卷积神经网络指南(一)

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 卷积神经网络听起来像一个奇怪的生物学和数学的组合,但它是计算机视觉领域最具影响力的创新之一.2012年是卷积神经网络最流行的一年,因为Alex Krizhevsky用它赢得当年的ImageNet竞争(基本上算得上是计算机视觉的年度奥运),它将分类错误记录从26%降至15%,这是惊人的改善.从那时起,深度学习开始流行起来,Facebook使用神经网络进行自动标记算法,Google进行照片搜索,亚马逊的产品推荐,

TensorFlow教程之完整教程 2.6 卷积神经网络

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权. 卷积神经网络 注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验. 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别:飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车. 目标 本教程的目标是建立一个用于识别图像的相对较小的卷积神经网络,在这一过程中

自动化所马佳彬、王威、王亮等研究人员提出不规则卷积神经网络:可动态提升内核效率

近年来,卷积神经网络(CNN)在学界和业界广受欢迎,已被成功地应用到各种特征提取的任务当中.CNN的效果相较于前有很大提升,对各种任务的实用性都非常的强,但尽管如此,经典CNN仍存在一些问题值得探讨和深究. 图1 规则与不规则卷积核的对比. (a) 不规则输入特征,其范围超越了3x3的区域 (b)两个3x3的卷积核,它们联合建模了输入特征 (c)从3x3卷积核到不规则卷积核的变形过程示例. 首先,卷积核的规则形状和不规则的特征模式并不匹配.在视觉任务中有一个重要的事实:虽然输入图像拥有矩形的形状

卷积神经网络CNN总结

从神经网络到卷积神经网络(CNN) 我们知道神经网络的结构是这样的:  那卷积神经网络跟它是什么关系呢? 其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构 数据输入层/ Input layer 卷积计算层/ CONV layer ReLU激励层 / ReLU layer 池化层 / Pooling layer 全连接层 / FC layer 1.数据输入层 该层要做的处理主要是对原始图