java-jvm-GC

说到垃圾回收(Garbage Collection,GC),很多人就会自然而然地把它和Java联系起来。在Java中,程序员不需要去关心内存动态分配和垃圾回收的问题,这一切都交给了JVM来处理。顾名思义,垃圾回收就是释放垃圾占用的空间,那么在Java中,什么样的对象会被认定为“垃圾”?那么当一些对象被确定为垃圾之后,采用什么样的策略来进行回收(释放空间)?在目前的商业虚拟机中,有哪些典型的垃圾收集器?下面我们就来逐一探讨这些问题。以下是本文的目录大纲:

  一.如何确定某个对象是“垃圾”?

  二.典型的垃圾收集算法

  三.典型的垃圾收集器

  如果有不正之处,希望谅解和批评指正,不胜感激。

  请尊重作者劳动成果,转载请标明原文链接:

   http://www.cnblogs.com/dolphin0520/p/3783345.html

一.如何确定某个对象是“垃圾”?

  在这一小节我们先了解一个最基本的问题:如果确定某个对象是“垃圾”?既然垃圾收集器的任务是回收垃圾对象所占的空间供新的对象使用,那么垃圾收集器如何确定某个对象是“垃圾”?—即通过什么方法判断一个对象可以被回收了。

  在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。不失一般性,如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了。这种方式成为引用计数法。

  这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法)。看下面这段代码:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public class Main
{

    public static void main(String[]
args) {

        MyObject
object1 = 
new MyObject();

        MyObject
object2 = 
new MyObject();

         

        object1.object
= object2;

        object2.object
= object1;

         

        object1
null;

        object2
null;

    }

}

 

class MyObject{

    public Object
object = 
null;

}

  最后面两句将object1和object2赋值为null,也就是说object1和object2指向的对象已经不可能再被访问,但是由于它们互相引用对方,导致它们的引用计数都不为0,那么垃圾收集器就永远不会回收它们。

  为了解决这个问题,在Java中采取了 可达性分析法。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。

  至于可达性分析法具体是如何操作的我暂时也没有看得很明白,如果有哪位朋友比较清楚的话请不吝指教。

  下面来看个例子:


1

2

3

4

5

6

7

Object
aobj = 
new Object
( ) ;

Object
bobj = 
new Object
( ) ;

Object
cobj = 
new Object
( ) ;

aobj
= bobj;

aobj
= cobj;

cobj
null;

aobj
null;

   第几行有可能会使得某个对象成为可回收对象?第7行的代码会导致有对象会成为可回收对象。至于为什么留给读者自己思考。

  再看一个例子:


1

2

3

String
str = 
new String("hello");

SoftReference<String>
sr = 
new SoftReference<String>(new String("java"));

WeakReference<String>
wr = 
new WeakReference<String>(new String("world"));

  这三句哪句会使得String对象成为可回收对象?第2句和第3句,第2句在内存不足的情况下会将String对象判定为可回收对象,第3句无论什么情况下String对象都会被判定为可回收对象。

  最后总结一下平常遇到的比较常见的将对象判定为可回收对象的情况:

  1)显示地将某个引用赋值为null或者将已经指向某个对象的引用指向新的对象,比如下面的代码:


1

2

3

4

5

Object
obj = 
new Object();

obj
null;

Object
obj1 = 
new Object();

Object
obj2 = 
new Object();

obj1
= obj2;

    2)局部引用所指向的对象,比如下面这段代码:


1

2

3

4

5

6

7

8

void fun()
{

 

.....

    for(int i=0;i<10;i++)
{

        Object
obj = 
new Object();

        System.out.println(obj.getClass());

    }   

}

   循环每执行完一次,生成的Object对象都会成为可回收的对象。

  3)只有弱引用与其关联的对象,比如:


1

WeakReference<String>
wr = 
new WeakReference<String>(new String("world"));

二.典型的垃圾收集算法

  在确定了哪些垃圾可以被回收后,垃圾收集器要做的事情就是开始进行垃圾回收,但是这里面涉及到一个问题是:如何高效地进行垃圾回收。由于Java虚拟机规范并没有对如何实现垃圾收集器做出明确的规定,因此各个厂商的虚拟机可以采用不同的方式来实现垃圾收集器,所以在此只讨论几种常见的垃圾收集算法的核心思想。

  1.Mark-Sweep(标记-清除)算法

  这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:

  从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

  2.Copying(复制)算法

  为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:

  这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。

  很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

  3.Mark-Compact(标记-整理)算法

  为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

  

  4.Generational Collection(分代收集)算法

  分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

  目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。

  而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。

  注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。

三.典型的垃圾收集器

  垃圾收集算法是 内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,用户可以根据自己的需求组合出各个年代使用的收集器。

  1.Serial/Serial Old

  Serial/Serial Old收集器是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。

  2.ParNew

  ParNew收集器是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

  3.Parallel Scavenge

  Parallel Scavenge收集器是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

  4.Parallel Old

  Parallel Old是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

  5.CMS

  CMS(Current Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

  6.G1

  G1收集器是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。

  下面补充一下关于内存分配方面的东西:

  

  对象的内存分配,往大方向上讲就是在堆上分配,对象主要分配在新生代的Eden Space和From Space,少数情况下会直接分配在老年代。如果新生代的Eden Space和From Space的空间不足,则会发起一次GC,如果进行了GC之后,Eden Space和From Space能够容纳该对象就放在Eden Space和From Space。在GC的过程中,会将Eden Space和From  Space中的存活对象移动到To Space,然后将Eden Space和From Space进行清理。如果在清理的过程中,To
Space无法足够来存储某个对象,就会将该对象移动到老年代中。在进行了GC之后,使用的便是Eden space和To Space了,下次GC时会将存活对象复制到From Space,如此反复循环。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。

  一般来说,大对象会被直接分配到老年代,所谓的大对象是指需要大量连续存储空间的对象,最常见的一种大对象就是大数组,比如:

  byte[] data = new byte[4*1024*1024]

  这种一般会直接在老年代分配存储空间。

  当然分配的规则并不是百分之百固定的,这要取决于当前使用的是哪种垃圾收集器组合和JVM的相关参数。

时间: 2024-08-31 03:35:59

java-jvm-GC的相关文章

jvm系列(六):Java服务GC参数调优案例

本文介绍了一次生产环境的JVM GC相关参数的调优过程,通过参数的调整避免了GC卡顿对JAVA服务成功率的影响. 这段时间在整理jvm系列的文章,无意中发现本文,作者思路清晰通过步步分析最终解决问题.我个人特别喜欢这种实战类的内容,经原作者的授权同意,将文章分享于此.备注部分为本人添加,主要起到说明的作用. 原文出处:https://segmentfault.com/a/1190000005174819 背景以及遇到的问题 我们的Java HTTP服务属于OLTP类型,对成功率和响应时间的要求比

从JVM的内存管理角度分析Java的GC垃圾回收机制_java

一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率 ,才能提高整个应用程序的性能.本篇文章首先简单介绍GC的工作原理之后,然后再对GC的几个关键问题进行深入探讨,最后提出一些Java程序设计建议,从GC角度提高Java程序的性能.    GC的基本原理    Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放.     对于程序员来说,分配对象使用ne

java jvm的知识详细介绍_java

java jvm 详解: 关于jvm的相关知识 一.堆内存和栈内存 1.jvm中的栈内存主要存储的是基本类型的变量和对象的引用 2.jvm中的堆内存主要存储的是用new来创建的对象和数组,可变长字符串(StringBuilder和StringBuffered)都是存储在堆内存的 使用堆的优点是动态分配存储空间,更灵活,但缺点是由于要动态分配内存,所以存储速度较慢:而使用栈速度就比较快,也可以实现数据的共享,但缺点是栈中的数据大小和生存期是必须确定的,缺乏灵活性 3.静态存储分配是存储静态变量和静

在Unix/Linux上令(java)JVM支持中文输出

unix|中文 原文: 在Unix/Linux上令(java)JVM支持中文输出 一.在Unix/Linux上令JVM支持中文输出 如果用户使用的是UNIX的远程服务器,就会遇到中文字体在图像中输出的问题,特别是由于许多管理员并不喜欢把主机的locale定为zh(因为意味着可能出乱码或必须装微形图形终端象zhcon,但很多情况下这样的条件并不具备).大部分程序员的JAVA经验苟限于JSP脚本程序,部分熟练的程序员大概开发过中间件.servlet.applet或在WINDOWS上运行的GUI程序.

JVM学习(4)——全面总结Java的GC算法和回收机制

引用实例被添加在引用队列中,可以在任何时候通过查询引用队列回收对象. 现在我对一个对象的生命周期进行描述: 新建Java对象A首先处于可达的,未执行finalize方法的状态,随着程序的运行,一些引用关系会消失,或者变迁,当对A使用可达性算法判断,对象A变成了 GC Roots 不可达时,A从可达状态变迁到不可达状态,但是JVM不会就就这样把它清理了,而是在第一次GC的时候,对它首先进行一个标记(标记清除算法),之后最少还要再进行一次筛选,而对其筛选的的条件就是看该对象是否覆盖了Object的f

JVM GC调优一则--增大Eden Space提高性能

缘起 线上有Tomcat升级到7.0.52版,然后有应用的JVM FullGC变频繁,在高峰期socket连接数,Cpu使用率都暴增. 思路 思路是Tomcat本身的代码应该是没有问题的,有问题的可能是应用代码升级,或者环境改变了,总之Tomcat的优先级排在最后. 先把应用的heap dump下来分析下: jmap -dump:format=b,file=path pid 用IBM的Heap Analyser分析,发现dubbo rpc调用的RpcInvocation对象和taglibs的Si

jvm GC日志解读

0.产生日志 0.1 IDE 运行下面代码会得到gc日志. 0.2 server -Xloggc:../gclogdir/logc.txt   指定gc日志的打印位置,注意必须指定到文件,不能为目录. 当应用重启时,会产生新的gc.log,旧的gc.log自动被重命名为形如 "gc.log.20161103103532"这样的格式. 1.Parallel Scavenge 这是一款年轻代GC器. 293.271: [GC [PSYoungGen: 300865K->6577K(3

Java CMS GC 361s引发的血案

问题现象 当前项目是基于GemFire集群开发,然而我们偶尔会遇到一个节点掉出集群的情况.在分析问题过程中,我们发现在该节点(N1)掉出去之前发生了如下事件.首先,N1最后的log时间在2015/07/23 06:25:35.544,并且直到2015/07/23 06:31:44.624(6分钟以后)在开始出现下一个log,接收到Primary Locator发出的机群中新的节点视图,处理Primary Locator给他的消息说它"Failed to respond within ack-wa

[Java]jvm参数选项中文文档

本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Options 编写的译文.主要介绍JVM中的非稳态选项及其使用说明. 为了让读者明白每个选项的含义,作者在原文基础上补充了大量的资料.希望这份文档,对正在研究JVM参数的朋友有帮助!  另外,考虑到本文档是初稿,如有描述错误,敬请指正.  非稳态选项使用说明 -XX:+<option> 启用选项 -XX:-<option> 不启用选项 -XX:<option>=<number> 给选项

浅谈关于Java的GC垃圾回收器的一些基本概念_java

一.基本回收算法 1. 引用计数(Reference Counting) 比较古老的回收算法.原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数.垃圾回收时,只用收集计数为0的对象.此算法最致命的是无法处理循环引用的问题. 2. 标记-清除(Mark-Sweep) 此算法执行分两阶段.第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除.此算法需要暂停整个应用,同时,会产生内存碎片. 3. 复制(Copying) 此算法把内存空间划为两个相等的区域