MapReduce框架下Aprioi算法的改进
王鑫 王喻红 于娇 葛冬梅
海量数据利用传统Apriori算法进行挖掘会浪费大量存储空间和通信资源,导致算法效率低下,因此,提出MapReduce框架下Aprioi算法的改进方法,首先采用水平划分的方法将MapReduce数据库分成n个独立的数据块,然后发送到采用动态负载均衡划分的m个工作节点上.每个节点扫描各自的数据块,产生局部候选频繁项集,计算每个候选频繁项集的支持度阈值并与最小支持度阈值进行比较以确定最终的频繁项集.改进后的算法可以减少各个节点之间的数据流动,只需要扫描两次事务数据库就能挖掘出全部频繁项集,节省扫描时间和存储空间,提高挖掘效率.
MapReduce框架下Aprioi算法的改进
时间: 2024-11-14 12:34:06