LruCache算法原理及实现

LruCache算法原理及实现

LruCache算法原理

LRULeast Recently Used的缩写,意思也就是近期最少使用算法。LruCacheLinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除。

基于LinkedHashMapLRUCache的实现,关键是重写LinkedHashMapremoveEldestEntry方法,在LinkedHashMap中该方法默认返回false(LRUCache本身未考虑线程安全的问题),这样此映射的行为将类似于正常映射,即永远不能移除最旧的元素。

LruCache算法实现的思路

  • 按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,LinkedHashMap提供了LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)构造函数,该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
  • LinkedHashMap提供了removeEldestEntry(Map.Entry eldest)方法。该方法在每次添加新条目时移除最旧条目,但该方法默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。因而需要重写该方法。

基于LinkedHashMap的LruCache具体实现

import java.util.LinkedHashMap;
import java.util.Map;

public class LruCache<K, V> {
    private LinkedHashMap<K, V> map;//链表存储对象

    private int cacheSize;//cache大小
    private int hitCount;//命中次数
    private int missCount;//未命中次数

    public synchronized final int getCacheSize() {
        return cacheSize;
    }

    public synchronized final int getHitCount() {
        return hitCount;
    }

    public synchronized final int getMissCount() {
        return missCount;
    }

    static final int DEFAULT_CACHE_SIZE = 2;//cache默认大小

    public V put(K key, V value) {
        return map.put(key, value);
    }

    public V get(Object key) {

        if (null == key) {
            throw new NullPointerException(" key == null ");
        }

        V val = null;
        synchronized (this) {
            val = map.get(key);
            if (null != val) {
                hitCount += 1;
                return val;
            }

            missCount += 1;
        }

        return val;
    }

    public LruCache() {
        this(DEFAULT_CACHE_SIZE);
    }

    public LruCache(int cacheSize) {
        this.cacheSize = cacheSize;
        int hashTableSize = (int) (Math.ceil(cacheSize / 0.75f) + 1);

        //LruCache算法实现的关键

        //1、按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,那么请使用下面的构造方法构造LinkedHashMap
        //public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder); //该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
        //2、LinkedHashMap提供了removeEldestEntry(Map.Entry<K,V> eldest)方法。该方法可以提供在每次添加新条目时移除最旧条目的实现程序,默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。
        map = new LinkedHashMap<K, V>(hashTableSize, 0.75f, true){
            private static final long serialVersionUID = 1L;

            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                System.out.println(" ***** size=" + size() + " cacheSize=" + LruCache.this.cacheSize + " ****");
//                return super.removeEldestEntry(eldest);
                return size() > LruCache.this.cacheSize;
            }
        };
    }

    public static void main(String[] args) {

        LruCache<String, String> lruCache = new LruCache<String, String>(3);
        lruCache.put("1", "1");
        lruCache.put("2", "2");
        lruCache.put("3", "3");
        lruCache.put("4", "4");
        lruCache.put("5", "5");

        System.out.println("==========================================================================");
        System.out.println("hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println("==========================================================================");

        System.out.println(lruCache.get("1") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("2") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("3") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        lruCache.put("6", "6");
        lruCache.put("7", "7");
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" + lruCache.getMissCount());
        lruCache.put("8", "8");

        System.out.println(lruCache.get("5") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());

        System.out.println("==========================================================================");
        for(Map.Entry<String, String> entry : lruCache.map.entrySet()) {
            System.out.println(entry.getKey()+":"+entry.getValue());
        }

    }
}

执行结果

***** size=1 cacheSize=3 ****
***** size=2 cacheSize=3 ****
***** size=3 cacheSize=3 ****
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
==========================================================================
hitCount=0 missCount=0
==========================================================================
null hitCount=0 missCount=1
null hitCount=0 missCount=2
3 hitCount=1 missCount=2
4 hitCount=2 missCount=2
4 hitCount=3 missCount=2
4 hitCount=4 missCount=2
4 hitCount=5 missCount=2
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
4 hitCount=6 missCount=2
***** size=4 cacheSize=3 ****
null hitCount=6 missCount=3
==========================================================================
7:7
4:4
8:8

参考文档:

时间: 2024-11-13 06:49:36

LruCache算法原理及实现的相关文章

Android开发中内存缓存LruCache实现原理及实例应用

先分析内存缓存是如何实现的,开始进入正题. BitmapUtils内存缓存的核心类LruMemoryCache,LruMemoryCache代码和v4包的LruCache一样,只是加了一个存储超期的处理,这里分析LruCache源码.LRU即Least Recently Used,近期最少使用算法.也就是当内存缓存达到设定的最大值时将内存缓存中近期最少使用的对象移除,有效的避免了OOM的出现. 讲到LruCache不得不提一下LinkedHashMap,因为LruCache中Lru算法的实现就是

SEO搜索中文分词算法原理实战教程

SEO搜索中文分词算法原理实战教程,如果一个人想成为一个合格的SEO人员,那么搜索引擎分词思维是必须掌握的,因为只有掌握了分词思维,你才可以做出搜索引擎喜欢,而且用户也喜欢的网页,虽然在梦想之旅视频教程中有和大家分享过搜索引擎中文分词原理,但没有完全的,系统的用文字版本和图片版本和大家分享,那么顾芳源就带大家如何正确学习SEO搜索分词思维吧. 搜索引擎中文分词原理 首先我们要知道搜索引擎工作原理是把每个网页的内容按词来录入到数据库,比如你的文章标题是:梦想SEO实战培训提供免费SEO教程,那么搜

[数据库]MySQL索引背后的数据结构及算法原理

一 写在前面的话 在编程领域有一句人尽皆知的法则"程序 = 数据结构 + 算法",我个人是不太赞同这句话(因为我觉得程序不仅仅是数据结构加算法),但是在日常的学习和工作中我确认深深感受到数据结构和算法的重要性,很多东西,如果你愿意稍稍往深处挖一点,那么扑面而来的一定是各种数据结构和算法知识.例如几乎每个程序员都要打交道的数据库,如果仅仅是用来存个数据.建建表.建建索引.做做增删改查,那么也许觉得数据结构和这东西没什么关系.不过要是哪天心血来潮,想知道的多一点,想研究一下如何优化数据库,

经典的7种排序算法 原理C++实现

经典的7种排序算法 原理C++实现 排序是编程过程中经常遇到的操作,它在很大程度上影响了程序的执行效率. 7种常见的排序算法大致可以分为两类:第一类是低级排序算法,有选择排序.冒泡排序.插入排序:第二类是高级排序算法,有堆排序.排序树.归并排序.快速排序. 一.低级排序算法 1. 选择排序 排序过程:给定一个数值集合,循环遍历集合,每次遍历从集合中选择出最小或最大的放入集合的开头或结尾的位置,下次循环从剩余的元素集合中遍历找出最小的并如上操作,最后直至所有原集合元素都遍历完毕,排序结束. 实现代

教你如何利用算法原理,让TA对你一见钟情

Tinder主打"看脸配对",操作非常简单,如果对TA感兴趣,可以将照片向右滑动,代表喜欢:如果对TA不感兴趣,可以将照片向左滑动,让其消失.一旦双方都标记为了"喜欢",就可以彼此发起对话. 鸡年过半,对象还没搞定?好消息,经过无数个昼夜的冥思苦想,我们已经找到Tinder配对算法的工作原理了!这个复杂的算法耗费了我们两个多月时间. Tinder配对算法是通过投票.打分和发消息这几种因素驱动的.Tinder配对算法会让你与对你感兴趣的人(通过右滑手机屏幕实现)配对.

DBSCAN聚类算法原理及其实现

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,它是一种基于高密度连通区域的.基于密度的聚类算法,能够将具有足够高密度的区域划分为簇,并在具有噪声的数据中发现任意形状的簇.我们总结一下DBSCAN聚类算法原理的基本要点: DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中.由于DBSCAN算法对高维数据定义密度很困难,

从算法原理,看推荐策略

  推荐算法简介 目前的推荐算法一般分为四大类: 协同过滤推荐算法 基于内容的推荐算法 混合推荐算法 流行度推荐算法 协同过滤的推荐算法 协同过滤推荐算法应该算是一种用的最多的推荐算法,它是通过用户的历史数据来构建"用户相似矩阵"和"产品相似矩阵"来对用户进行相关item的推荐,以达到精准满足用户喜好的目的.比如亚马逊等电商网站上的"买过XXX的人也买了XXX"就是一种协同过滤算法的应用. 基于内容的推荐算法 基于内容的推荐算法,是将item的名

《Hadoop与大数据挖掘》一2.5 K-Means算法原理及Hadoop MapReduce实现

2.5 K-Means算法原理及Hadoop MapReduce实现 2.5.1 K-Means算法原理 K-Means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表.它是将数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则(如图2-45所示).K-Means算法以欧氏距离作为相似度测度,求对应某一初始聚类中心向量V最优分类,使得评价指标最小.算法采用误差平方和准则函数作为聚类准则函数. 具体的算法步骤如下: 1)随机在图中取K(这里K=2)个种子点

《Hadoop与大数据挖掘》一2.6 TF-IDF算法原理及Hadoop MapReduce实现

2.6 TF-IDF算法原理及Hadoop MapReduce实现 2.6.1 TF-IDF算法原理 原理:在一份给定的文件里,词频(Term Frequency,TF)指的是某一个给定的词语在该文件中出现的次数.这个数字通常会被正规化,以防止它偏向长的文件(同一个词语在长文件里可能会比在短文件里有更高的词频,而不管该词语重要与否).逆向文件频率(Inverse Document Frequency,IDF)是一个词语普遍重要性的度量.某一特定词语的IDF可以由总文件数目除以包含该词语的文件的数