1. 记号与假设
(1) 已燃气体的化学能为 $0$.
(2) 单位质量的未燃气体的化学能为 $g_0>0$.
2. 对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\gamma,\quad e=e^\frac{S-S_0}{c_V}\rho^{\gamma-1}\ra p=(\gamma-1)\rho e =(\gamma-1)\rho (E-Zg_0). \eex$$
3. 对理想气体的多方气体, 温度为 $$\bex p=R\rho T\ra T=\cfrac{(\gamma-1)e}{R}=\cfrac{\gamma-1}{R}(E-Zg_0).\\ \eex$$ 往求熵: $$\beex \bea \rd E+p\rd \tau &=\rd e+p\rd \tau\quad\sex{Z\mbox{ 固定}}\\ &=\rd e+\cfrac{1-\gamma}{\rho e}\rd \rho\quad \sex{p\rd \tau=p\rd \cfrac{1}{\rho} =-\cfrac{p}{\rho^2}\rd \rho =\cfrac{(1-\gamma)e}{\rho}\rd \rho}\\ &=\rho^{\gamma-1}\rd \sex{\rho^{1-\gamma}e}\\ &\quad\sex{ M\rd x+N\rd y:\mbox{ 当 }\cfrac{M_y-N_x}{-M}=\phi(y)\mbox{ 时有积分因子 }e^{\int \phi(y)\rd y}}\\ &=\cfrac{(\gamma-1)e}{R} \rd \sez{\cfrac{R}{\gamma-1}\ln \sex{\rho^{1-\gamma}e}}\\ &=T\rd S. \eea \eeex$$ 故 $$\bex S=\cfrac{R}{\gamma-1}\ln\sex{\rho^{1-\gamma}e}+S_0 =\cfrac{R}{\gamma-1} \ln\sez{\rho^{1-\gamma}(E-Zg_0)}+S_0. \eex$$
4. 反应率 $$\bex \bar k=KH(T-T_c)=\sedd{\ba{ll}K,&T>T_c,\\ 0,&T\leq T_c,\ea} \eex$$ 其中 $T_c$ 为燃点. 于是 $$\bex \cfrac{\p S}{\p Z}\bar k =-\cfrac{Kg_0}{T}H(T-T_c), \eex$$ 其具有间断性.