Android视图的绘制流程(上) View的测量

综述

  View的绘制流程可以分为三大步,它们分别是measure,layout和draw过程。measure表示View的测量过程,用于测量View的宽度和高度;layout用于确定View在父容器的位置;draw则是负责将View绘制到屏幕中。下面主要来看一下View的Measure过程。

测量过程

  View的绘制流程是从ViewRoot的performTraversals方法开始的,ViewRoot对应ViewRootImpl类。ViewRoot在performTraversals中会调用performMeasure方法来进行对根View的测量过程。而在performMeasure方法中又会调用View的measure方法。对于View的measure方法它是一个final类型,也就是说这个measure方法不能被子类重写。但是在measure方法中调用了onMeasure方法。所以View的子类可以重写onMeasure方法来实现各自的Measure过程。在这里也就是主要对onMeasure方法进行分析。

MeasureSpec

  MeasureSpec是View类中的一个静态内部类。一个MeasureSpec封装了父布局传递给子布局的布局要求。每个MeasureSpec都代表着一个高度或宽度的要求。每个MesureSpec都是由specSize和specMode组成,它代表着一个32位的int值,其中高2位代表specSize,低30位代表specMode。
  MeasureSpec的测量模式有三种,下面介绍一下这三种测量模式:

UNSPECIFIED
父容器对子View没有任何的限制,子View可以是任何的大小。
EXACTLY
父容器为子View大小指定一个具体值,View的最终大小就是specSize。对应View属性match_parent和具体值。
AT_MOST
子View的大小最大只能是specSize,也就是所子View的大小不能超过specSize。对应View属性的wrap_content.

  在MeasureSpec中可以通过specSize和specMode并使用makeMeasureSpec方法来创建一个MeasureSpec,还可以通过getMode和getSize来获取MeasureSpec的specMode和specSize。

View的测量过程

  在上面已经说到,View的Measure过程是由measure方法来完成的,而measure方法通过调用onMeasure方法来完成View的Measure过程。那么就来看一下onMeasure方法。

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec), getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec)); }

  在View的onMeasure方法中只是调用了setMeasuredDimension方法,setMeasuredDimension方法的作用就是设置View的高和宽的测量值。对于View测量后宽和高的值是通过getDefaultSize方法来获取的。下面就来一下这个getDefaultSize方法。

public static int getDefaultSize(int size, int measureSpec) { int result = size; int specMode = MeasureSpec.getMode(measureSpec); int specSize = MeasureSpec.getSize(measureSpec); switch (specMode) { case MeasureSpec.UNSPECIFIED: result = size; break; case MeasureSpec.AT_MOST: case MeasureSpec.EXACTLY: result = specSize; break; } return result; }

  对于MeasureSpec的AT_MOST和EXACTLY模式下,直接返回的就是MeasureSpec的specSize,也就是说这个specSize就是View测量后的大小。而对于在UNSPECIFIED模式下,View的测量值则为getDefaultSize方法中的第一个参数size。这个size所对应的宽和高是通过getSuggestedMinimumWidth和getSuggestedMinimumHeight两个方法获取的。下面就来看一下这两个方法。

protected int getSuggestedMinimumHeight() { return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight()); } protected int getSuggestedMinimumWidth() { return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth()); }

  在这里可以看到对于View宽和高的取值是根据View是否存在背景进行设置的。在这里以View的宽度来进行说明。若是View没有背景则是View的宽度mMinWidth。对于mMinWidth值得设置可以在XML布局文件中设置minWidth属性,它的默认值为0。也可以通过调用View的setMinimumWidth()方法其赋值。若是View存在背景的话,则取View本身最小宽度mMinWidth和View背景的最小宽度它们中的最大值。

ViewGroup的测量过程

  对于ViewGroup的Measure过程,ViewGroup处理Measure自己本身的大小,还需要遍历子View,并调用它们的measure方法,然后各个子元素再去递归执行Measure过程。在ViewGroup中并没有重写onMeasure方法,因为ViewGroup它是一个抽象类,对于不同的具体ViewGroup它的onMeasure方法中所实现的过程不一样。但是在ViewGroup中提供了一个measureChildren方法,对子View进行测量。下面就来看一下这个measureChildren方法。

protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) { final int size = mChildrenCount; final View[] children = mChildren; for (int i = 0; i < size; ++i) { final View child = children[i]; if ((child.mViewFlags & VISIBILITY_MASK) != GONE) { measureChild(child, widthMeasureSpec, heightMeasureSpec); } } }

  在这里获取ViewGroup中所有的子View。然后遍历ViewGroup中子View并调用measureChild方法来完成对子View的测量。下面看一下measureChild方法。

protected void measureChild(View child, int parentWidthMeasureSpec, int parentHeightMeasureSpec) { final LayoutParams lp = child.getLayoutParams(); final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec, mPaddingLeft + mPaddingRight, lp.width); final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec, mPaddingTop + mPaddingBottom, lp.height); child.measure(childWidthMeasureSpec, childHeightMeasureSpec); }

  在这段代码中通过getChildMeasureSpec方法获取子View宽和高的MeasureSpec。然后调用子View的measure方法开始对View进行测量。下面就来看一下是如何通过getChildMeasureSpec方法来获取View的MeasureSpec的。

public static int getChildMeasureSpec(int spec, int padding, int childDimension) { int specMode = MeasureSpec.getMode(spec); int specSize = MeasureSpec.getSize(spec); int size = Math.max(0, specSize - padding); int resultSize = 0; int resultMode = 0; switch (specMode) { // Parent has imposed an exact size on us case MeasureSpec.EXACTLY: if (childDimension >= 0) { resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size. So be it. resultSize = size; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size. It can't be // bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } break; // Parent has imposed a maximum size on us case MeasureSpec.AT_MOST: if (childDimension >= 0) { // Child wants a specific size... so be it resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size, but our size is not fixed. // Constrain child to not be bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size. It can't be // bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } break; // Parent asked to see how big we want to be case MeasureSpec.UNSPECIFIED: if (childDimension >= 0) { // Child wants a specific size... let him have it resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size... find out how big it should // be resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size; resultMode = MeasureSpec.UNSPECIFIED; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size.... find out how // big it should be resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size; resultMode = MeasureSpec.UNSPECIFIED; } break; } return MeasureSpec.makeMeasureSpec(resultSize, resultMode); }

  在这段代码对于MeasureSpec的获取主要是根据父容器的MeasureSpec和View本身的LayoutParams。下面通过一张表格来看一下它们之间的对应关系。

  

到这里通过getChildMeasureSpec方法获取到子View的MeasureSpec以后,便调用View的Measure方法,开始对View进行测量。
  正如刚才说的那样对于ViewGroup它是一个抽象类,并没有重写View的onMeasure方法。但是到具体的ViewGroup时,例如FrameLayout,LinearLayout,RelativeLayout等,它们通过重写onMeasure方法来来完成自身以及子View的Measure过程。下面以FrameLayout为例,看一下的Measure过程。在FrameLayout中,它的Measure过程也算是比较简单,下面就来看一下FrameLayout中的onMeasure方法。

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { int count = getChildCount(); final boolean measureMatchParentChildren = MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY || MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY; mMatchParentChildren.clear(); int maxHeight = 0; int maxWidth = 0; int childState = 0; for (int i = 0; i < count; i++) { final View child = getChildAt(i); if (mMeasureAllChildren || child.getVisibility() != GONE) { measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0); final LayoutParams lp = (LayoutParams) child.getLayoutParams(); maxWidth = Math.max(maxWidth, child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin); maxHeight = Math.max(maxHeight, child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin); childState = combineMeasuredStates(childState, child.getMeasuredState()); if (measureMatchParentChildren) { if (lp.width == LayoutParams.MATCH_PARENT || lp.height == LayoutParams.MATCH_PARENT) { mMatchParentChildren.add(child); } } } } // Account for padding too maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground(); maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground(); // Check against our minimum height and width maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight()); maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth()); // Check against our foreground's minimum height and width final Drawable drawable = getForeground(); if (drawable != null) { maxHeight = Math.max(maxHeight, drawable.getMinimumHeight()); maxWidth = Math.max(maxWidth, drawable.getMinimumWidth()); } setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState), resolveSizeAndState(maxHeight, heightMeasureSpec, childState << MEASURED_HEIGHT_STATE_SHIFT)); count = mMatchParentChildren.size(); if (count > 1) { for (int i = 0; i < count; i++) { final View child = mMatchParentChildren.get(i); final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams(); final int childWidthMeasureSpec; if (lp.width == LayoutParams.MATCH_PARENT) { final int width = Math.max(0, getMeasuredWidth() - getPaddingLeftWithForeground() - getPaddingRightWithForeground() - lp.leftMargin - lp.rightMargin); childWidthMeasureSpec = MeasureSpec.makeMeasureSpec( width, MeasureSpec.EXACTLY); } else { childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec, getPaddingLeftWithForeground() + getPaddingRightWithForeground() + lp.leftMargin + lp.rightMargin, lp.width); } final int childHeightMeasureSpec; if (lp.height == LayoutParams.MATCH_PARENT) { final int height = Math.max(0, getMeasuredHeight() - getPaddingTopWithForeground() - getPaddingBottomWithForeground() - lp.topMargin - lp.bottomMargin); childHeightMeasureSpec = MeasureSpec.makeMeasureSpec( height, MeasureSpec.EXACTLY); } else { childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec, getPaddingTopWithForeground() + getPaddingBottomWithForeground() + lp.topMargin + lp.bottomMargin, lp.height); } child.measure(childWidthMeasureSpec, childHeightMeasureSpec); } } }

  在这部分代码中逻辑也很简单,主要完成了两件事。首先FrameLayout完成自身的测量过程,然后在遍历子View,执行View的measure方法,完成View的Measure过程。在这里代码比较简单就不在进行详细描述。

总结

  最后对View和ViewGroup的Measure过程做一下总结。对于View,它的Measure很简单,在获取到View的高和宽的测量值之后,便为其设置高和宽。而对于ViewGroup来说,除了完成自身的Measure过程以外,还需要遍历子View,完成子View的测量过程。

时间: 2025-01-09 21:33:42

Android视图的绘制流程(上) View的测量的相关文章

Android开发之绘制平面上的多边形功能分析

本文实例讲述了Android开发之绘制平面上的多边形功能.分享给大家供大家参考,具体如下: 计算机里的3D图形其实是由很多个平面组合而成的.所谓"绘制3D"图形,其实是通过多个平面图形形成的.调用GL10图形绘制2D图形的步骤如下: i. 调用GL10的glEnableClientState(GL10.GL_VERTEX_ARRAY);方法启用顶点坐标数组. ii. 调用GL10的glEnableClientState(GL10.GL_COLOR_ARRAY);方法启用顶点颜色数组.

Android学习自定义View(二)——View和ViewGroup绘制流程以及invalidate()

MainActivity如下: package cc.testviewstudy2; import android.os.Bundle; import android.widget.LinearLayout; import android.app.Activity; /** * Demo描述: * 关于自定义View的学习(二) * * View的绘制流程:onMeasure()-->onLayout()-->onDraw() * * 学习资料: * 1 http://blog.csdn.ne

android View层的绘制流程

还记得前面<Android应用setContentView与LayoutInflater加载解析机制源码分析>这篇文章吗?我们有分析到Activity中界面加载显示的基本流程原理,记不记得最终分析结果就是下面的关系: 看见没有,如上图中id为content的内容就是整个View树的结构,所以对每个具体View对象的操作,其实就是个递归的实现. 前面<Android触摸屏事件派发机制详解与源码分析一(View篇)>文章的3-1小节说过Android中的任何一个布局.任何一个控件其实都

Android绘制流程

一.前言 1.1.C++界面库 MFC.WTL.DuiLib.QT.Skia.OpenGL. Android里面的画图分为2D和3D两种: 2D是由Skia 来实现的,3D部分是由OpenGL实现的. 1.2.Android基本概念 窗口 对用户来说, 窗口就是手机屏幕, 包括下面的那些home.back按键.状态栏等.对于Activity来说, 窗口就是除系统状态栏和系统按键的屏幕区域, 有window之类的概念.对于wms来说, 它没有什么窗口的概念, 它能接受的只是一个个view而已.也就

公共技术点之 View 绘制流程

转自 :http://a.codekk.com/detail/Android/lightSky/%E5%85%AC%E5%85%B1%E6%8A%80%E6%9C%AF%E7%82%B9%E4%B9%8B%20View%20%E7%BB%98%E5%88%B6%E6%B5%81%E7%A8%8B View 绘制机制 1. View 树的绘图流程 当 Activity 接收到焦点的时候,它会被请求绘制布局,该请求由 Android framework 处理.绘制是从根节点开始,对布局树进行 mea

View绘制流程

1. View 树的绘图流程 当 Activity 接收到焦点的时候,它会被请求绘制布局,该请求由 Android framework 处理.绘制是从根节点开始,对布局树进行 measure 和 draw.整个 View 树的绘图流程在ViewRoot.java类的performTraversals()函数展开,该函数所做 的工作可简单概况为是否需要重新计算视图大小(measure).是否需要重新安置视图的位置(layout).以及是否需要重绘(draw),流程图如下: View 绘制流程函数调

Android视图控件架构分析之View、ViewGroup_Android

在Android中,视图控件大致被分为两类,即ViewGroup和View,ViewGroup控件作为父控件,包含并管理着子View,通过ViewGroup和View便形成了控件树,各个ViewGoup对象和View对象就是控件树中的节点.在控件树中,以树的深度来遍历查找对应的控件元素,同时,上层控件负责子控件的测量与绘制,并传递交互事件. Android控件树: AndroidUI界面架构图: 一.测量View的工具类:MeasureSpec 1.MeasureSpec包含了测量的模式和测量的

Android视图控件架构分析之View、ViewGroup

在Android中,视图控件大致被分为两类,即ViewGroup和View,ViewGroup控件作为父控件,包含并管理着子View,通过ViewGroup和View便形成了控件树,各个ViewGoup对象和View对象就是控件树中的节点.在控件树中,以树的深度来遍历查找对应的控件元素,同时,上层控件负责子控件的测量与绘制,并传递交互事件. Android控件树: AndroidUI界面架构图: 一.测量View的工具类:MeasureSpec 1.MeasureSpec包含了测量的模式和测量的

Android LibGDX游戏引擎开发教程(七) 中文字体的显示和绘制(上)

在字体的显示和绘制中,Libgdx的作者(Mario Zechner,美国人)给我们提供了一个非常好用的工具 --Hiero,那么下面就来看看它具体的使用方法. 一.Hiero工具的使用 1.Hiero工 具的下载地址 开发教程(七) 中文字体的显示和绘制(上)-android 绘制字体"> 2.下载结束后,双击hiero.jar文件打开,我们可以看到Hiero的一些基本功能,相比来说作者做的 还是比较简单易懂的.从界面上知道,它包括很多选项,可以制作特效.改变背景颜色.设置内间距等等,右