[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式.

解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p \rho}{\p x}+\rho \cfrac{\p u_1}{\p x}} +\cfrac{\p\rho}{\p S}\sex{\cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\p x}}\\ &=\cfrac{\p p}{\p t}+u_1\cfrac{\p p}{\p x}+\tilde c^2\rho \cfrac{\p u_1}{\p x}, \eea \eeex$$ 而 $$\bex \cfrac{1}{\tilde c^2\rho }\cfrac{\p p}{\p t}+\cfrac{u_1}{\tilde c^2\rho}\cfrac{\p p}{\p x}+\cfrac{\p u_1}{\p x}=0.  \eex$$ 于是 (5. 10)-(5. 16) 为 $$\beex \bea \mu_0\cfrac{\p H_2}{\p t}+\mu_0u_1\cfrac{\p H_2}{\p x} +\mu_0H_2\cfrac{\p u_1}{\p x} -\mu_0H_1\cfrac{\p u_2}{\p x}&=0,\\ \mu_0\cfrac{\p H_3}{\p t} +\mu_0u_1\cfrac{\p H_3}{\p x} +\mu_0H_3\cfrac{\p u_1}{\p x} -\mu_0H_1\cfrac{\p u_3}{\p x}&=0,\\ \cfrac{1}{\tilde c^2\rho }\cfrac{\p p}{\p t}+\cfrac{u_1}{\tilde c^2\rho}\cfrac{\p p}{\p x}+\cfrac{\p u_1}{\p x}&=0,\\ \cfrac{1}{\rho}\cfrac{\p u_1}{\p t} +\cfrac{u_1}{\rho}\cfrac{\p u_1}{\p t} +\cfrac{\p p}{\p x} +\mu_0\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}&=F_1,\\ \rho \cfrac{\p u_2}{\p t} +\rho u_1\cfrac{\p u_2}{\p x}-\mu_0H_1\cfrac{\p H_2}{\p x}&=F_2,\\ \rho \cfrac{\p u_3}{\p t}+\rho u_1\cfrac{\p u_3}{\p x} -\mu_0H_1\cfrac{\p H_3}{\p x}&=F_3,\\ \cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\p x}&=0; \eea \eeex$$ 可写成 $$\bex A(U)\cfrac{\p U}{\p t}+B(U)\cfrac{\p U}{\p x}=C, \eex$$ 其中 $$\beex \bea U&=(H_2,H_3,p,u_1,u_2,u_3,S)^T,\\ A(U)&=\diag(\mu_0,\mu_0,\cfrac{1}{\tilde c^2\rho},\cfrac{1}{\rho},\rho,\rho,1),\\ B(U)&=\sex{\ba{ccccccc} \mu_0u_1&0&0&\mu_0H_2&-\mu_0H_1&0&0\\ 0&\mu_0u_1&0&\mu_0H_3&0&-\mu_0H_1&0\\ 0&0&\cfrac{u_1}{\tilde c^2 \rho}&1&0&0&0\\ \mu_0H_2&\mu_0H_3&1&\cfrac{u_1}{\rho}&0&0&0\\ -\mu_0H_1&0&0&0&\rho u_1&0&0\\ 0&-\mu_0H_1&0&0&0&\rho u_1&0\\ 0&0&0&0&0&0&u_1 \ea},\\ C&=(0,0,0,F_1,F_2,F_3,0)^T. \eea \eeex$$ 

时间: 2024-10-14 17:10:10

[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构的相关文章

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构

试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.   解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_1}{\p m}}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p t'} =\cfrac{\p p}{\p t'}-p'(\tau)\cfrac{\p u_1}{\p m}, \ee

[物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式

试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p }{\p t}\sex{e+\cfrac{u^2}{2}} +\cfrac{\p}{\p x}(pu)&=Fu. \eea \eeex$$   证明

[物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组

试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) 即化为 Euler 方程组 (1. 15).   证明: 若 $\rot{\bf u}={\bf 0}$, 则 $$\bex -\lap{\bf u}=\rot\rot{\bf u}-\n \Div{\bf u}={\bf 0}, \eex$$ 而 Navier-Stokes 方程组化为 Euler

[物理学与PDEs]第2章习题7 一维不可压理想流体的求解

设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p_2$, 且 $p_1>p_2$, 试确定管内流体的速度 (忽略体积力).   解答: 由流体动力学方程组知 $$\beex \bea &\quad \cfrac{\rd u}{\rd x}=0;\\ \cfrac{\rd u}{\rd t}=-\cfrac{\rd p}{\rd x} &

[物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解

考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1>p_2$. 试求该流场的速度 $u(x,y)$ 与压力 $p(x)$ (忽略体积力).   解答: 由流体动力学方程组知 $$\beex \bea \cfrac{\p u}{\p x}=0&\ra u=u(y),\\ -\mu \cfrac{\rd^2u}{\rd y^2}+\cfrac{\rd p}

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8