如何在C++中通过模板去除强制转换_C 语言

C++与C语言相比是一个强类型语言,即对数据类型的匹配程度较C更为严格,这有助于避免程序员在编程过程中由于粗心所犯之错。由于历史原因,C++中仍保留了reinterpret_ cast、static_cast等用于强制类型转换的关键字,但从语言向强类型发展的趋势来看,我们在编程工作中应尽量少使用强制类型转换,模板有助于我们实现这一目的。减少使用强制类型转换的另一个好处,是程序的可维护性更强。
下面让我们通过例子来了解如何通过模板减少程序中的强制转换。图1以简化的形式示例了双向链表(Double-Linked List, DLL)的部分实现内容,以及使用双向链表的代码片段。

class dll_t; 

class dll_node_t
{
  friend class dll_t; 

public:
  explicit dll_node_t (); 

  void data (void *_p_data) {p_data_ = _p_data;}
  void *data () {return p_data_;} 

private:
  dll_node_t *prev_;
  dll_node_t *next_;
  void *p_data_;
}; 

class channel_t
{
public:
  channel_t () : node ()
  {
    node_.data (reinterpret_cast <void *> (this));
  } 

private:
  dll_node_t node_;
}; 

图1 

其中,dll_node_t是双向链表节点的类封装。它除了prev_和next_两个用于保存前一个和后一个节点指针的成员变量外,还有一个用于保存节点数据的p_data_。由于节点所保存数据的具体含义完全取决于链表的使用者,因此p_data_类型被定义为void*,以便容纳任何类型的数据。位于第10和11行的data()函数用于分别设置和获取p_data_变量的值。
 
图中第19至29行的代码示例了channel_t类使用dll_node_t类的片段。在channel_t类的构造函数中,调用data()函数时需要通过强制类型转换的方式将this指针保存到节点的p_data_变量中。不难想象,当通过data()函数获取p_data_中的值时,也得通过强制转换的方式使其变成类型为channel_t的指针(这部分代码在图中并未列出)。
 
图2是使用模板改写后的版本。相信读者能轻易地辨别出其中已不存在强制类型转换的身影。
 

template <typename T_NODE> class dll_t; 

template <typename T_DATA> class dll_node_t
{
  friend class dll_t <dll_node_t <T_DATA> >; 

public:
  explicit dll_node_t (); 

  void data (T_DATA *_p_data) {p_data_ = _p_data;}
  T_DATA *data () {return p_data_;} 

private:
  dll_node_t *prev_;
  dll_node_t *next_;
  T_DATA *p_data_;
}; 

class channel_t
{
public:
  channel_t (): node_ ()
  {
    node_.data (this);
  } 

private:
  dll_node_t <channel_t> node_;
};

图2

以上就是本文的全部内容,希望对大家熟练使用模板去除强制转换有所帮助。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索c++
, 模板
强制转换类型
c语言强制类型转换、c语言强制转换、c语言中强制类型转换、c语言强制转换int、go语言强制类型转换,以便于您获取更多的相关知识。

时间: 2024-10-28 14:53:43

如何在C++中通过模板去除强制转换_C 语言的相关文章

浮点数在计算机中存储方式是怎样的_C 语言

C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit,double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53. 无论是单精度还是双精度在存储中都分为三个部分: 1.符号位(Sign

VC++中图像处理类CBitmap的用法_C 语言

VC++中图像处理类CBitmap的用法 class CBitmap : public CGdiObject { DECLARE_DYNAMIC(CBitmap) public: static CBitmap* PASCAL FromHandle(HBITMAP hBitmap); // Constructors CBitmap(); BOOL LoadBitmap(LPCTSTR lpszResourceName); BOOL LoadBitmap(UINT nIDResource); BOO

c++ 中__declspec 的用法详解_C 语言

c++ 中__declspec 的用法如下,想要了解的继续往下看吧. 语法说明: __declspec ( extended-decl-modifier-seq ) 扩展修饰符: 1:align(#) 用__declspec(align(#))精确控制用户自定数据的对齐方式 ,#是对齐值. e.g __declspec(align(32)) struct Str1{ int a, b, c, d, e; }; 它与#pragma pack()是一对兄弟,前者规定了对齐的最小值,后者规定了对齐的最

C语言中基础小问题详细介绍_C 语言

1.printf格式输出函数 如果格式控制说明项数多于输出表列个数,则会输出错误数据:如果输出表列个数多于格式控制说明数,则多出数不被输出.%md,m指的是输出字段的宽度.如果输出字段位数小于m,则左端以空格补齐,若大于m,则按照实际位数输出.%-md,基本同上,只不过不同之处在于,空格在右端补齐printf参数可以是常量,变量或表达式,VC++ 6.0中采用从右向左顺序求值,从左向右输出如 复制代码 代码如下: int x = 5; printf("%4d%4d%4d", x, ++

简单讲解C语言中宏的定义与使用_C 语言

宏定义是预编译功能的一种, 预编译又称为预处理, 是为编译做的预备工作的阶段.处理#开头的指令, 比如拷贝 #include 包含的文件代码,#define宏定义的替换,条件编译等. 使用宏定义的好处:使用宏定义的好处:可提高程序的通用性和易读性,减少不一致性,减少输入错误和便于修改.例如 π 这个常量,我们有时候会在程序的多个地方使用,如果每次使用都重新定义,一来比较麻烦,二来容易出错,所以我们可以把 π 做成宏定义来使用.   语法说明: (1)宏名一般用大写 (2)使用宏可提高程序的通用性

C语言中的函数指针学习笔记_C 语言

一.定义函数指针 return_type (*func_pointer)(parameter_list) 普通指针变量的定义 int * p; char * pointer; 类型的限定都在变量前面: 函数指针类型的限定是前后都有,前面是返回类型,后面是输入参数. 利用typedef 可以简化上面的表达方式. typedef return_type (*FunctionPointer) (parameter_list); FunctionPointer func_pointer; 这样是不是容易

C语言中static的作用及C语言中使用静态函数有何好处_C 语言

想了解Java中static关键字的作用和用法详细介绍,请点击此处了解详情. 在C语言中,static的字面意思很容易把我们导入歧途,其实它的作用有三条,分别是: 一是隐藏功能,对于static修饰的函数和全局变量而言 二是保持持久性功能,对于static修饰的局部变量而言. 三是因为存放在静态区,全局和局部的static修饰的变量,都默认初始化为0 下面我逐一给大家介绍: (1)先来介绍它的第一条也是最重要的一条:隐藏. 当我们同时编译多个文件时,所有未加static前缀的全局变量和函数都具有

C++中的四种强制转换

显式类型转换又被称之为 强制类型转换. C 风格: (type-id) C++风格: static_cast.dynamic_cast.reinterpret_cast.和const_cast C风格的强制类型转换是最好不要用的,最好是使用标准的C++风格的转换符. static_cast 用法:static_cast < type-id > ( expression ) 说明:该运算符把expression转换为type-id类型,但没有运行时类型检查来保证转换的安全性. 主要用法: 用于类

详细分析Android中实现Zygote的源码_C 语言

概述 在Android系统中,所有的应用程序进程,以及用来运行系统关键服务的System进程都是由zygote进程负责创建的.因此,我们将它称为进程孵化器.zygote进程是通过复制自身的方式来创建System进程和应用程序进程的.由于zygote进程在启动时会在内部创建一个虚拟机实例,因此,通过复制zygote进程而得到的System进程和应用程序进程可以快速地在内部获得一个虚拟机实例拷贝. zygote进程在启动完成之后,会马上将System进程启动起来,以便它可以将系统的关键服务启动起来.