如何用C语言画一个“圣诞树”_C 语言

如何用C语言画一个“圣诞树”,我使用了左右镜像的Sierpinski triangle,每层减去上方一小块,再用符号点缀。可生成不同层数的「圣诞树」,如下图是5层的结果

#include <stdlib.h>

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 4;
  for (int j = 1; j <= n; j++) {
    int s = 1 << j, k = (1 << n) - s, x;
    for (int y = s - j; y >= 0; y--, putchar('\n')) {
      for (x = 0; x < y + k; x++) printf(" ");
      for (x = 0; x + y < s; x++) printf("%c ", '!' ^ y & x);
      for (x = 1; x + y < s; x++) printf("%c ", '!' ^ y & (s - y - x - 1));
    }
  }
}

基本代码来自Sierpinski triangle的实现,字符的想法来自于code golf - Draw A Sierpinski Triangle。

更新1: 上面的是我尝试尽量用最少代码来画一个抽象一点的圣诞树,因此树干都没有。然后,我尝试用更真实一点的风格。因为树是一个比较自相似的形状,这次使用递归方式描述树干和分支。

n = 0的时候,就是只画一主树干,树干越高就越幼:<img

n = 1的时候,利用递归画向两面分支,旋转,越高的部分缩得越小。<img

n = 2 的时候,继续分支出更细的树支。n = 2 的时候,继续分支出更细的树支。<img

n = 3就差不多够细节了。n = 3就差不多够细节了。

代码长一点,为了容易理解我不「压缩」它了。

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define PI 3.14159265359

float sx, sy;

float sdCircle(float px, float py, float r) {
  float dx = px - sx, dy = py - sy;
  return sqrtf(dx * dx + dy * dy) - r;
}

float opUnion(float d1, float d2) {
  return d1 < d2 ? d1 : d2;
}

#define T px + scale * r * cosf(theta), py + scale * r * sin(theta)

float f(float px, float py, float theta, float scale, int n) {
  float d = 0.0f;
  for (float r = 0.0f; r < 0.8f; r += 0.02f)
    d = opUnion(d, sdCircle(T, 0.05f * scale * (0.95f - r)));

  if (n > 0)
    for (int t = -1; t <= 1; t += 2) {
      float tt = theta + t * 1.8f;
      float ss = scale * 0.9f;
      for (float r = 0.2f; r < 0.8f; r += 0.1f) {
        d = opUnion(d, f(T, tt, ss * 0.5f, n - 1));
        ss *= 0.8f;
      }
    }

  return d;
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  for (sy = 0.8f; sy > 0.0f; sy -= 0.02f, putchar('\n'))
    for (sx = -0.35f; sx < 0.35f; sx += 0.01f)
      putchar(f(0, 0, PI * 0.5f, 1.0f, n) < 0 ? '*' : ' ');
}

这段代码实际上是用了圆形的距离场来建模,并且没有优化。这是一棵「祼树」,未能称得上是「圣诞树」。

更新2: 简单地加入装饰及丝带,在命令行可以选择放大倍率,下图是两倍大的。

<img src="https://pic2.zhimg.com/fa09e223f37b214d5bca14953366150d_b.jpg" data-rawwidth="711" data-rawheight="823" class="origin_image zh-lightbox-thumb" width="711" data-original="https://pic2.zhimg.com/fa09e223f37b214d5bca14953366150d_r.jpg">// f() 及之前的部分沿上

int ribbon() {
  float x = (fmodf(sy, 0.1f) / 0.1f - 0.5f) * 0.5f;
  return sx >= x - 0.05f && sx <= x + 0.05f;
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  float zoom = argc > 2 ? atof(argv[2]) : 1.0f;
  for (sy = 0.8f; sy > 0.0f; sy -= 0.02f / zoom, putchar('\n'))
    for (sx = -0.35f; sx < 0.35f; sx += 0.01f / zoom) {
      if (f(0, 0, PI * 0.5f, 1.0f, n) < 0.0f) {
        if (sy < 0.1f)
          putchar('.');
        else {
          if (ribbon())
            putchar('=');
          else
            putchar("............................#j&o"[rand() % 32]);
        }
      }
      else
        putchar(' ');
    }
}

2D的我想已差不多了。接下来看看有没有空尝试3D的。

更新3:终于要3D了。之前每个节点是往左和右分支,在三维中我们可以更自由一点,我尝试在每个节点申出6个分支。最后用了简单的Lambertian着色(即max(dot(N, L), 0)。

n = 1 的时候比较容易看出立体的着色:

可是n=3的时候已乱得难以辨认:

估计是因为aliasing而做成的。由于光照已经使用了finite difference来计算法线,性能已经很差,我就不再尝试做Supersampling去解决aliasing的问题了。另外也许Ambient occlusion对这问题也有帮助,不过需要更多的采样。

因为需要三维旋转,不能像二维简单使用一个角度来代表旋转,所以这段代码加入了不少矩阵运算。当然用四元数也是可以的

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define PI 3.14159265359f

float sx, sy;

typedef float Mat[4][4];
typedef float Vec[4];

void scale(Mat* m, float s) {
  Mat temp = { {s,0,0,0}, {0,s,0,0 }, { 0,0,s,0 }, { 0,0,0,1 } };
  memcpy(m, &temp, sizeof(Mat));
}

void rotateY(Mat* m, float t) {
  float c = cosf(t), s = sinf(t);
  Mat temp = { {c,0,s,0}, {0,1,0,0}, {-s,0,c,0}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void rotateZ(Mat* m, float t) {
  float c = cosf(t), s = sinf(t);
  Mat temp = { {c,-s,0,0}, {s,c,0,0}, {0,0,1,0}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void translate(Mat* m, float x, float y, float z) {
  Mat temp = { {1,0,0,x}, {0,1,0,y}, {0,0,1,z}, {0,0,0,1} };
  memcpy(m, &temp, sizeof(Mat));
}

void mul(Mat* m, Mat a, Mat b) {
  Mat temp;
  for (int j = 0; j < 4; j++)
    for (int i = 0; i < 4; i++) {
      temp[j][i] = 0.0f;
      for (int k = 0; k < 4; k++)
        temp[j][i] += a[j][k] * b[k][i];
    }
  memcpy(m, &temp, sizeof(Mat));
}

void transformPosition(Vec* r, Mat m, Vec v) {
  Vec temp = { 0, 0, 0, 0 };
  for (int j = 0; j < 4; j++)
    for (int i = 0; i < 4; i++)
      temp[j] += m[j][i] * v[i];
  memcpy(r, &temp, sizeof(Vec));
}

float transformLength(Mat m, float r) {
  return sqrtf(m[0][0] * m[0][0] + m[0][1] * m[0][1] + m[0][2] * m[0][2]) * r;
}

float sphere(Vec c, float r) {
  float dx = c[0] - sx, dy = c[1] - sy;
  float a = dx * dx + dy * dy;
  return a < r * r ? sqrtf(r * r - a) + c[2] : -1.0f;
}

float opUnion(float z1, float z2) {
  return z1 > z2 ? z1 : z2;
}

float f(Mat m, int n) {
  float z = -1.0f;
  for (float r = 0.0f; r < 0.8f; r += 0.02f) {
    Vec v = { 0.0f, r, 0.0f, 1.0f };
    transformPosition(&v, m, v);
    z = opUnion(z, sphere(v, transformLength(m, 0.05f * (0.95f - r))));
  }

  if (n > 0) {
    Mat ry, rz, s, t, m2, m3;
    rotateZ(&rz, 1.8f);

    for (int p = 0; p < 6; p++) {
      rotateY(&ry, p * (2 * PI / 6));
      mul(&m2, ry, rz);
      float ss = 0.45f;
      for (float r = 0.2f; r < 0.8f; r += 0.1f) {
        scale(&s, ss);
        translate(&t, 0.0f, r, 0.0f);
        mul(&m3, s, m2);
        mul(&m3, t, m3);
        mul(&m3, m, m3);
        z = opUnion(z, f(m3, n - 1));
        ss *= 0.8f;
      }
    }
  }

  return z;
}

float f0(float x, float y, int n) {
  sx = x;
  sy = y;
  Mat m;
  scale(&m, 1.0f);
  return f(m, n);
}

int main(int argc, char* argv[]) {
  int n = argc > 1 ? atoi(argv[1]) : 3;
  float zoom = argc > 2 ? atof(argv[2]) : 1.0f;
  for (float y = 0.8f; y > -0.0f; y -= 0.02f / zoom, putchar('\n'))
    for (float x = -0.35f; x < 0.35f; x += 0.01f / zoom) {
      float z = f0(x, y, n);
      if (z > -1.0f) {
        float nz = 0.001f;
        float nx = f0(x + nz, y, n) - z;
        float ny = f0(x, y + nz, n) - z;
        float nd = sqrtf(nx * nx + ny * ny + nz * nz);
        float d = (nx - ny + nz) / sqrtf(3) / nd;
        d = d > 0.0f ? d : 0.0f;
        // d = d < 1.0f ? d : 1.0f;
        putchar(".-:=+*#%@@"[(int)(d * 9.0f)]);
      }
      else
        putchar(' ');
    }
}

更新4:发现之前的TransformLength()写错了,上面已更正。另外,考虑提升性能时,一般是需要一些空间剖分的方式去加速检查,但这里刚好是一个树状的场景结构,可以简单使用Bounding volume hierarchy,我使用了球体作为包围体积。只需加几句代码,便可以大大缩减运行时间。

另外,考虑到太小的叶片是很难采样得到好看的结果,我尝试以一个较大的球体去表现叶片(就如素描时考虑更整体的光暗而不是每片叶片的光暗),我觉得结果有进步。

float f(Mat m, int n) {
  // Culling
  {
    Vec v = { 0.0f, 0.5f, 0.0f, 1.0f };
    transformPosition(&v, m, v);
    if (sphere(v, transformLength(m, 0.55f)) == -1.0f)
      return -1.0f;
  }

  float z = -1.0f;

  if (n == 0) { // Leaf
    Vec v = { 0.0f, 0.5f, 0.0f, 1.0f };
    transformPosition(&v, m, v);
    z = sphere(v, transformLength(m, 0.3f));
  }
  else { // Branch
    for (float r = 0.0f; r < 0.8f; r += 0.02f) {
      Vec v = { 0.0f, r, 0.0f, 1.0f };
      transformPosition(&v, m, v);
      z = opUnion(z, sphere(v, transformLength(m, 0.05f * (0.95f - r))));
    }
  }

  // ...
}

其实我在回答这问题的时候,并没有计划,只是一步一步地尝试。现在我觉得用这规模的代码大概不能再怎么进展了。不过今天看到大堂里的圣诞树,觉得那些装饰物还挻有趣的,有时候除了画整体,也可以画局部,看看是否能再更新。

圣诞节快乐!

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索c语言
圣诞树
c语言圣诞树、c语言输出圣诞树、c语言打印圣诞树、c语言画圣诞树、圣诞树c语言代码,以便于您获取更多的相关知识。

时间: 2024-11-03 13:52:05

如何用C语言画一个“圣诞树”_C 语言的相关文章

C语言设计一个闪闪的圣诞树_C 语言

控制台打印一个圣诞树:简简单单的C语言知识,真的很基础,小白也能看得懂哦 /******************************* 圣诞树 byC语言小白入门 *******************************/ #include<stdio.h> #include <stdlib.h> #include <time.h> #include<Windows.h> #define X 25 //画面长度 int background[20]

C语言 typedef:给类型起一个别名_C 语言

C语言允许为一个数据类型起一个新的别名,就像给人起"绰号"一样. 起别名的目的不是为了提高程序运行效率,而是为了编码方便.例如有一个结构体的名字是 stu,要想定义一个结构体变量就得这样写: struct stu stu1; struct 看起来就是多余的,但不写又会报错.如果为 struct stu 起了一个别名 STU,书写起来就简单了: STU stu1; 这种写法更加简练,意义也非常明确,不管是在标准头文件中还是以后的编程实践中,都会大量使用这种别名. 使用关键字 typede

字符串的组合算法问题的C语言实现攻略_C 语言

基本字符串组合问题 题目:输入一个字符串,输出该字符串中字符的所有组合.举个例子,如果输入abc,它的组合有a.b.c.ab.ac.bc.abc. 上面我们详细讨论了如何用递归的思路求字符串的排列.同样,本题也可以用递归的思路来求字符串的组合. 假设我们想在长度为n的字符串中求m个字符的组合.我们先从头扫描字符串的第一个字符.针对第一个字符,我们有两种选择:第一是把这个字符放到组合中去,接下来我们需要在剩下的n-1个字符中选取m-1个字符:第二是不把这个字符放到组合中去,接下来我们需要在剩下的n

c语言-求一个关于C语言中有关文件和链表的一个程序

问题描述 求一个关于C语言中有关文件和链表的一个程序 我们老师布置了一道题:有A和B两个文件夹,每个文件夹下面都有若干子目录.但是 不知道目录里面文件的类型和具体的文件数目.现在要创建一个C文件夹,对C文件夹 的要求是:(1)C文件夹下面子目录的文件名和文件长度是A的,打开的内容是B的( 打开之后只要内容是B的,不要求内容完整与否).(2)通过键入命令或是其他方式 C文件夹可以直接恢复到B文件夹.要求使用链表完成. 我们老师只把题目说了这些,他说对A.B文件夹的定义让我们自己讨论吧.能实现他所

c语言-询问一个关于C语言输入的问题?

问题描述 询问一个关于C语言输入的问题? 在学C语言版的数据结构时为了方便经常使用ElemType类型,用typedef ElemType+int或其他类型,那么在编写函数时scanf()中的输入数据类型该怎么定义啊? 解决方案 scanf对应这个结构体里的字段呗. typedef ElemType { int x, int y } et; scanf("%d",&et.x) ; 解决方案二: 答案就在这里:一个关于C语言输入的问题

C语言泛型编程实例教程_C 语言

本文实例讲述了C语言泛型编程的方法,分享给大家供大家参考之用.具体分析如下: 首先,泛型编程让你编写完全一般化并可重复使用的算法,其效率与针对某特定数据类型而设计的算法相同.在C语言中,可以通过一些手段实现这样的泛型编程.这里介绍一种方法--通过无类型指针void* 看下面的一个实现交换两个元素内容的函数swap,以整型int为例: void swap(int* i1,int* i2){ int temp; temp = *i1; *i1 = *i2; *i2 = temp; } 当你想交换两个

C语言冒泡排序法心得_C 语言

记得以前在大学里学习c语言的时候,刚开始是很吃力的. 入门级别的算法中有个叫冒泡排序法,也有称为气泡排序法.那时候刚接触它就对它的名字特别感兴趣,因为觉得很有意思.好了,废话不多说了,我们先一起简单回忆下这个冒泡排序法.  一.打印行和列一般是这样的一个简单代码,输出4行4列*: for(int i = 1,i < 5,i++){ for(int j = 1,j < 5,j++){ printf("*"); } printf("n\"); }  二.打印

12个关于C语言的有趣问答_C 语言

本文汇总了12个关于C语言的问答,对于加深对C语言程序设计的难点理解很有帮助,读者可参考一下: 1.gets() 方法 问:以下代码有个被隐藏住的问题,你能找到它吗? 答:这个不显眼的问题就是使用了 gets() 方法.此方法接受一个string类型参数,但是却没有检测此数值是否 有足够的空间来拷贝数据.所以这里我们一般用 fgets() 方法将来的更好. #include<stdio.h> int main(void) { char buff[10]; memset(buff,0,sizeo

浅谈C语言的字符串分割_C 语言

说起来很有意思,自认为对C语言理解得还是比较深刻的.但居然到今天才知道有个strtok函数,试用了一下突然感慨以前做了多少重复劳动.每次需要解析配置文件,每次需要分割字符串,居然都是自己去分割字符串,既累人又容易出错.感概技术学得不够全面啊!这里引用一段strtok用法: The strtok() function returns a pointer to the next "token" in str1, where str2 contains the delimiters that