Spark技术内幕: Task向Executor提交的源码解析

在上文《Spark技术内幕:Stage划分及提交源码分析》中,我们分析了Stage的生成和提交。但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task。我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的。

这就是本文的主题。

从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks开始,分析Stage是如何生成TaskSet的。

如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks。

org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程如下:

  1. 首先得到RDD中需要计算的partition,对于Shuffle类型的stage,需要判断stage中是否缓存了该结果;对于Result类型的Final Stage,则判断计算Job中该partition是否已经计算完成。
  2. 序列化task的binary。Executor可以通过广播变量得到它。每个task运行的时候首先会反序列化。这样在不同的executor上运行的task是隔离的,不会相互影响。
  3. 为每个需要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
  4. 确保Task是可以被序列化的。因为不同的cluster有不同的taskScheduler,在这里判断可以简化逻辑;保证TaskSet的task都是可以序列化的
  5. 通过TaskScheduler提交TaskSet。

TaskSet就是可以做pipeline的一组完全相同的task,每个task的处理逻辑完全相同,不同的是处理数据,每个task负责处理一个partition。pipeline,可以称为大数据处理的基石,只有数据进行pipeline处理,才能将其放到集群中去运行。对于一个task来说,它从数据源获得逻辑,然后按照拓扑顺序,顺序执行(实际上是调用rdd的compute)。

TaskSet是一个数据结构,存储了这一组task:

private[spark] class TaskSet(
    val tasks: Array[Task[_]],
    val stageId: Int,
    val attempt: Int,
    val priority: Int,
    val properties: Properties) {
    val id: String = stageId + "." + attempt

  override def toString: String = "TaskSet " + id
}

管理调度这个TaskSet的时org.apache.spark.scheduler.TaskSetManager,TaskSetManager会负责task的失败重试;跟踪每个task的执行状态;处理locality-aware的调用。

详细的调用堆栈如下:

  1. org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
  2. org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
  3. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
  4. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
  5. org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
  6. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
  7. org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
  8. org.apache.spark.executor.Executor#launchTask

首先看一下org.apache.spark.executor.Executor#launchTask:

  def launchTask(
      context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
    val tr = new TaskRunner(context, taskId, taskName, serializedTask)
    runningTasks.put(taskId, tr)
    threadPool.execute(tr) // 开始在executor中运行
  }

TaskRunner会从序列化的task中反序列化得到task,这个需要看 org.apache.spark.executor.Executor.TaskRunner#run 的实现:task.run(taskId.toInt)。而task.run的实现是:

 final def run(attemptId: Long): T = {
    context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
    context.taskMetrics.hostname = Utils.localHostName()
    taskThread = Thread.currentThread()
    if (_killed) {
      kill(interruptThread = false)
    }
    runTask(context)
  }

对于原来提到的两种Task,即

  1.  org.apache.spark.scheduler.ShuffleMapTask
  2.  org.apache.spark.scheduler.ResultTask

分别实现了不同的runTask:

org.apache.spark.scheduler.ResultTask#runTask即顺序调用rdd的compute,通过rdd的拓扑顺序依次对partition进行计算:

  override def runTask(context: TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

    metrics = Some(context.taskMetrics)
    try {
      func(context, rdd.iterator(partition, context))
    } finally {
      context.markTaskCompleted()
    }
  }

而org.apache.spark.scheduler.ShuffleMapTask#runTask则是写shuffle的结果,

  override def runTask(context: TaskContext): MapStatus = {
    // Deserialize the RDD using the broadcast variable.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
      //此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的

    metrics = Some(context.taskMetrics)
    var writer: ShuffleWriter[Any, Any] = null
    try {
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
      return writer.stop(success = true).get
    } catch {
      case e: Exception =>
        if (writer != null) {
          writer.stop(success = false)
        }
        throw e
    } finally {
      context.markTaskCompleted()
    }
  }

这两个task都不要按照拓扑顺序调用rdd的compute来完成对partition的计算,不同的是ShuffleMapTask需要shuffle write,以供child stage读取shuffle的结果。 对于这两个task都用到的taskBinary,即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的。

通过上述几篇博文,实际上我们已经粗略的分析了从用户定义SparkContext开始,集群是如果为每个Application分配Executor的,回顾一下这个序列图:

还有就是用户触发某个action,集群是如何生成DAG,如果将DAG划分为可以成Stage,已经Stage是如何将这些可以pipeline执行的task提交到Executor去执行的。当然了,具体细节还是非常值得推敲的。以后的每个周末,都会奉上某个细节的实现。

休息了。明天又会开始忙碌的一周。

时间: 2024-09-11 19:43:41

Spark技术内幕: Task向Executor提交的源码解析的相关文章

Spark技术内幕:Stage划分及提交源码分析

当触发一个RDD的action后,以count为例,调用关系如下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#runJob org.apache.spark.scheduler.DAGScheduler#runJob org.apache.spark.scheduler.DAGScheduler#submitJob org.apache.spark.scheduler.DAGSchedulerEventProcess

Spark技术内幕:Shuffle Map Task运算结果的处理

Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据. Executor端的处理 在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.sche

Spark技术内幕:Master的故障恢复

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于Standby状态的Master在接收到org.apache.spark.deploy.master.ZooKeeperLeaderElectionAgent发送的ElectedLeader消息后,就开始通过ZK中保存的Application,Driver和Worker的元数据信息进行故障恢复了,它

Spark技术内幕:Client,Master和Worker 通信源码解析

Spark的Cluster Manager可以有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并最终完成计算.具体阐述可以阅读<Spark:大数据的电花火石! >. 那么Standalone模式下,Client,Master和Worker是如何进行通信,注册并开启服务的呢? 1. node之间的R

【代码管理】GitHub超详细图文攻略 - Git客户端下载安装 GitHub提交修改源码工作流程 Git分支 标签 过滤 Git版本工作流

找到一篇很详细的Git教程,真的很不错,推荐!!! GitHub操作总结 : 总结看不明白就看下面的详细讲解. . 作者 :万境绝尘  . GitHub操作流程 : 第一次提交 :   方案一 : 本地创建项目根目录, 然后与远程GitHub关联, 之后的操作一样; -- 初始化git仓库 :git init ; -- 提交改变到缓存 :git commit -m 'description' ; -- 本地git仓库关联GitHub仓库 : git remote add origin git@g

我的第一本著作:Spark技术内幕上市!

现在各大网站销售中! 京东:http://item.jd.com/11770787.html 当当:http://product.dangdang.com/23776595.html 亚马逊:http://www.amazon.cn/SparkInternals 前言和目录附上,以便有需要了解的同学: 诞生于2005年的Hadoop解决了大数据的存储和计算问题,已经成为大数据处理的事实标准.但是,随着数据规模的爆炸式增长和计算场景的丰富细化,使得Hadoop越来越难以满足用户的需求.针对不同的计

Spark技术内幕: Shuffle详解(一)

通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor:在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分

Spark技术内幕:Shuffle的性能调优

通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp

AJAX错误提交系统源码示例

摘要 当一些应用程序崩溃时,它们往往向用户提供一个机会来提交关于该错误的信息.该信息能够帮助开发者追踪并修正错误.本文将向你展示如何在你的JavaScript/AJAX应用程序中实现这样的功能. 一. 引言 如果可以存取终端用户的计算机的话,那么终端用户的JavaScript错误就很容易调试.既然你不能实现这样的操作,那么你可以采取下面这样的措施:让用户向你发送你修正该问题需要的内容. 当象Mozilla浏览器这样的应用程序崩溃时,它们会启动一个错误提交程序.这些程序将询问用户是否愿意提交错误报