spark streaming Task not serialization

问题描述

在sparkstreaming中遇到一个问题,在对结果保存(写文件或者是写数据库)总是报了一个Tasknotserializable错误

时间: 2024-10-21 18:29:07

spark streaming Task not serialization的相关文章

《Spark官方文档》Spark Streaming编程指南(二)

累加器和广播变量 首先需要注意的是,累加器(Accumulators)和广播变量(Broadcast variables)是无法从Spark Streaming的检查点中恢复回来的.所以如果你开启了检查点功能,并同时在使用累加器和广播变量,那么你最好是使用懒惰实例化的单例模式,因为这样累加器和广播变量才能在驱动器(driver)故障恢复后重新实例化.代码示例如下: Scala Java Python object WordBlacklist { @volatile private var ins

Spark Streaming Programming Guide

参考,http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html  Overview SparkStreaming支持多种流输入,like Kafka, Flume, Twitter, ZeroMQ or plain old TCP sockets,并且可以在上面进行transform操作,最终数据存入HDFS,数据库或dashboard 另外可以把Spark's in-built machine

Spark Streaming Dynamic Resource Allocation 文档(非官方特性)

必要配置 通过下面参数开启DRA spark.streaming.dynamicAllocation.enabled=true 设置最大最小的Executor 数目: spark.streaming.dynamicAllocation.minExecutors=0 spark.streaming.dynamicAllocation.maxExecutors=50 可选配置 这些参数可以不用配置,都已经提供了一个较为合理的默认值 开启日志: spark.streaming.dynamicAlloc

spark streaming 中使用saveAsNewAPIHadoopDataset方法写入hbase中,从checkpoint中恢复时报错

问题描述 最近写了一个从Kafka读取数据,处理之后通过saveAsNewAPIHadoopDataset方法写入到hbase中,正常运行的时候没有报错,写入也正常,但是当手动停止应用,再次执行(通过Checkpoint恢复)的时候就会报错,跪求大神们解答!!报错信息如下:15/12/2216:26:52WARNVerifiableProperties:Propertyserializer.classisnotvalid15/12/2216:26:57WARNFileOutputCommitte

Spark Streaming 不同Batch任务可以并行计算么?

关于Spark Streaming中的任务有如下几个概念: Batch Job Stage Task 其实Job,Stage,Task都是Spark Core里就有的概念,Batch则是Streaming特有的概念.同一Stage里的Task一般都是并行的.同一Job里的Stage可以并行,但是一般如果有依赖则是串行,可以参考我这篇文章Spark 多个Stage执行是串行执行的么?. Job的并行度复杂些,由两个配置决定: spark.scheduler.mode(FIFO/FAIR) spar

利用Spark Streaming实现分布式采集系统

前言 前两天我刚在自己的一篇文章中鼓吹数据天生就是流式的,并且指出: 批量计算已经在慢慢退化,未来必然是属于流式计算的,数据的流动必定是由数据自己驱动流转的. 而Spark Streaming 在上层概念上,完美融合了批量计算和流式计算,让他们你中有我,我中有你,这种设计使得Spark Streaming 作为流式计算的一个载体,同时也能作为其他一些需要分布式架构的问题提供解决方案. Spark Streaming 作为一些分布式任务系统基础的优势 天然就是分布式的,不用再为实现分布式协调而蛋疼

spark streaming问题-六台机器集群,40M数据就报错,spark streaming运行例子程序wordcount

问题描述 六台机器集群,40M数据就报错,spark streaming运行例子程序wordcount 请大神帮忙解决一下:六台机器,SparkStreaming的例子程序,运行在yarn上四个计算节点(nodemanager),每台8G内存,i7处理器,想测测性能. 自己写了socket一直向一个端口发送数据,spark 接收并处理 运行十几分钟汇报错:WARN scheduler TaskSetManagerost task 0.1 in stage 265.0 :java.lang.Exc

Spark修炼之道(进阶篇)——Spark入门到精通:第十六节 Spark Streaming与Kafka

作者:周志湖 主要内容 Spark Streaming与Kafka版的WordCount示例(一) Spark Streaming与Kafka版的WordCount示例(二) 1. Spark Streaming与Kafka版本的WordCount示例 (一) 启动kafka集群 root@sparkslave02:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-server-start.sh config/server.properties root

大数据-spark streaming运行一段时间报以下异常,怎么解决

问题描述 spark streaming运行一段时间报以下异常,怎么解决 Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 1568735.0 failed 4 times, most recent failure: Lost task 2.3 in stage 1568735.0 (TID 11808399, iZ9