C#数据结构与算法揭秘19

这节,我们介绍基数排序和归并排序。

一、基数排序

基数排序(Radix Sort)的设计思想与前面介绍的各种排序方法完全不同。前面介绍的排序方法主要是通过关键码的比较和记录的移动这两种操作来实现排序的,而基数排序不需要进行关键码的比较和记录的移动。基数排序是一种借助于多关键码排序的思想,是将单关键码按基数分成多关键码进行排序的方法,是一种分配排序。

下面用一个具体的例子来说明多关键码排序的思想。
一副扑克牌有 52 张牌,可按花色和面值进行分类,其大小关系如下:
花色:梅花<方块<红心<黑心
面值:2<3<4<5<6<7<8<9<10<J<Q<K<A
在对这 52 张牌进行升序排序时,有两种排序方法:
方法一:可以先按花色进行排序,将牌分为 4 组,分别是梅花组、方块组、红心组和黑心组,然后,再对这 4 个组的牌分别进行排序。最后,把 4 个组连接起来即可。
方法二:可以先按面值进行排序,将牌分为 13 组,分别是 2 号组、3 号组、4 号组、…、A 号组,再将这 13 组的牌按花色分成 4 组,最后,把这四组的牌连接起来即可。
设序列中有n个记录,每个记录包含d个关键码{k1,k2,…,kd},序列有序指的对序列中的任意两个记录ri和rj(1≤i≤j≤n) ,(ki1, ki2,…, kid)<( kj1, kj2,…, kjd) 其中,k1称为最主位关键码,kd称为最次位关键码。

其中,k1称为最主位关键码,kd称为最次位关键码。

多关键码排序方法按照从最主位关键码到最次位关键码或从最次位关键码到最主位关键码的顺序进行排序,分为两种排序方法:
(1)最高位优先法(MSD法) 。先按k1排序,将序列分成若干子序列,每个子序列中的记录具有相同的k1值;再按k2排序,将每个子序列分成更小的子序列;然后,对后面的关键码继续同样的排序分成更小的子序列,直到按kd排序分组分成最小的子序列后,最后将各个子序列连接起来,便可得到一个有序的序列。前面介绍的扑克牌先按花色再按面值进行排序的方法就是MSD法。
(2)最次位优先法(LSD法) 。先按kd排序,将序列分成若干子序列,每个子序列中的记录具有相同的kd值; 再按kd-1排序, 将每个子序列分成更小的子序列;然后,对后面的关键码继续同样的排序分成更小的子序列,直到按k1排序分组分成最小的子序列后,最后将各个子序列连接起来,便可得到一个有序的序列。前面介绍的扑克牌先按面值再花色按进行排序的方法就是LSD法。

基数的源代码如下:

//基数排序的方法
public int[] RadixSort(int[] ArrayToSort, int digit,int len)
        {

           // 从低位到高位的方法
            for (int k = 1; k <= digit; k++)
            {
                // 临时的数组存储里面的十进制的排序的结果
                int[] tmpArray = new int[ArrayToSort.Length];

                //临时的数组存储计数的结果
                int[] tmpCountingSortArray = new int[len];

                //基数的数组1
                    for (int i = 0; i < ArrayToSort.Length; i++)
                {
                    //截取实际值   570-570/10*10
                    int tmpSplitDigit = ArrayToSort[i] / (int)Math.Pow(10, k - 1) - (ArrayToSort[i] / (int)Math.Pow(10, k)) * 10;
                    tmpCountingSortArray[tmpSplitDigit] += 1;
                }

                for (int m = 1; m < 10; m++)
                {
                    tmpCountingSortArray[m] += tmpCountingSortArray[m - 1];
                }

                //   输出的结果
                for (int n = ArrayToSort.Length - 1; n >= 0; n--)
                {
                    int tmpSplitDigit = ArrayToSort[n] / (int)Math.Pow(10, k - 1) - (ArrayToSort[n] / (int)Math.Pow(10, k)) * 10;
                    tmpArray[tmpCountingSortArray[tmpSplitDigit] - 1] = ArrayToSort[n];
                    tmpCountingSortArray[tmpSplitDigit] -= 1;
                }

                //  拷贝排序的数组
                for (int p = 0; p < ArrayToSort.Length; p++)
                {
                    ArrayToSort[p] = tmpArray[p];
                }
            }

            return ArrayToSort;
        }
//双层的循环    时间的复杂度是O(n2)

      如图所示:

基数排序是稳定的排序,时间的复杂度是O(n2).

二、归并排序

归并排序(merge Sort)主要是二路归并排序。二路归并排序的基本思想是:将两个有序表合并为一个有序表。
假设顺序表 sqList 中的 n 个记录为 n 个长度为1的有序表,从第1个有序表开始,把相邻的两个有序表两两进行合并成一个有序表,得到 n/2 个长度为2的有序表。如此重复,最后得到一个长度为 n 的有序表。
一趟二路归并排序算法的实现如下所示, 算法中记录的比较代表记录关键码的比较,顺序表中只存放了记录的关键码:

对于n个记录的顺序表,将这n个记录看作叶子结点,若将两两归并生成的子表看作它们的父结点, 则归并过程对应于由叶子结点向根结点生成一棵二叉树的过程。所以,归并趟数约等于二叉树的高度减1,即log2n,每趟归并排序记录关键码比较的次数都约为n/2,记录移动的次数为2n(临时顺序表的记录复制到原顺序表中记录的移动次数为n) 。 因此, 二路归并排序的时间复杂度为O (nlog2n) 。
而二路归并排序使用了n个临时内存单元存放记录,所以,二路归并排序算法的空间复杂度为O(n) 。归并排序,如图所示:

一趟二路归并排序算法的实现如下所示, 算法中记录的比较代表记录关键码的比较,顺序表中只存放了记录的关键码,相应的源代码如下:

public void Merge(SeqList<int> sqList, int len)
   {
        int m = 0;                 //临时顺序表的起始位置
int l1 = 0;                 //第1个有序表的起始位置
        int h1;                    //第1个有序表的结束位置
int l2;                    //第2个有序表的起始位置
int h2;                     //第2个有序表的结束位置
        int i = 0;
int j = 0;  

        //临时表,用于临时将两个有序表合并为一个有序表
        SeqList<int> tmp = new SeqList<int>(sqList.GetLength()); 

       //归并处理
        while (l1 + len < sqList.GetLength())
       {
           l2 = l1 + len;           //第2个有序表的起始位置
           h1 = l2 - 1;             //第1个有序表的结束位置 

          //第2个有序表的结束位置
           h2 = (l2 + len - 1 < sqList.GetLength())
? l2 + len - 1 : sqList.Last; 

           j = l2;
           i = l1; 

           //两个有序表中的记录没有排序完
           while ((i<=h1) && (j<=h2))
           {
                //第1个有序表记录的关键码小于第2个有序表记录的关键码
                if (sqList[i] <= sqList[j])
                {
                    tmp[m++] = sqList[i++];
                }
                //第2个有序表记录的关键码小于第1个有序表记录的关键码
else
                {
                    tmp[m++] = sqList[j++];
                }
            } 

            //第1个有序表中还有记录没有排序完
            while (i <= h1)
            {
                tmp[m++] = sqList[i++];
            } 

            //第2个有序表中还有记录没有排序完
            while (j <= h2)
            {
                tmp[m++] = sqList[j++];
            } 

            l1 = h2 + 1;
        } 

        i = l1;
        //原顺序表中还有记录没有排序完
        while (i < sqList.GetLength())
        {
            tmp[m++] = sqList[i++];
        } 

        //临时顺序表中的记录复制到原顺序表,使原顺序表中的记录有序
       for (i = 0; i < sqList.GetLength(); ++i)
        {
            sqList[i] = tmp[i];
}
}
二路归并排序算法的实现如下:
public void MergeSort(SeqList<int> sqList)
     {
          int k = 1;     //归并增量 

          while (k < sqList.GetLength())
          {
               Merge(sqList, k);
               k *= 2;
           }
  }

对于n个记录的顺序表,将这n个记录看作叶子结点,若将两两归并生成的子表看作它们的父结点, 则归并过程对应于由叶子结点向根结点生成一棵二叉树的过程。所以,归并趟数约等于二叉树的高度减1,即log2n,每趟归并排序记录关键码比较的次数都约为n/2,记录移动的次数为2n(临时顺序表的记录复制到原顺序表中记录的移动次数为n) 。 因此, 二路归并排序的时间复杂度为O (nlog2n)。而二路归并排序使用了n个临时内存单元存放记录,所以,二路归并排序算法的空间复杂度为O(n) 。

C#数据结构,就此结束了,这是我的一点总结。

时间: 2024-10-31 12:47:47

C#数据结构与算法揭秘19的相关文章

C#数据结构与算法揭秘六

这节我们讨论两种用的蛮多的数据结构--串和数组 首先,老样子,什么是串,这里串不是吃的牛肉串,羊肉串,而是字符串.在应用程序中使用最频繁的类型是字符串.字符串简称串,是一种特殊的线性表,其特殊性在于串中的数据元素是一个个的字符.字符串在计算机的许多方面应用很广.如在汇编和高级语言的编译程序中,源程序和目标程序都是字符串数据.在事务处理程序中,顾客的信息如姓名.地址等及货物的名称.产地和规格等,都被作为字符串来处理.另外,字符串还具有自身的一些特性.因此,把字符串作为一种数据结构来研究.具体情况,

C#数据结构与算法揭秘二

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二 线性结构_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘二_C#教程

上文对数据结构与算法,有了一个简单的概述与介绍,这篇文章,我们介绍一中典型数据结构--线性结构. 什么是线性结构,线性结构是最简单.最基本.最常用的数据结构.线性表是线性结构的抽象(Abstract), 线性结构的特点是结构中的数据元素之间存在一对一的线性关系. 这 种一对一的关系指的是数据元素之间的位置关系,即: (1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数据元素: (2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有一个元素.也就是说,数据元素是一个接一个的排

C#数据结构与算法揭秘九

这节,我们说一说二叉树常见的应用的场景.呵呵.............. 定义一个哈夫曼树,首先,要高清楚什么是哈夫曼树.所谓哈夫曼树是又叫最优二叉树,指的是对于一组具有确定权值的叶子结点的具有最小带权路径长度的二叉树. 介绍哈夫曼树的一些基本概念. (1)路径(Path):从树中的一个结点到另一个结点之间的分支构成这两个结点间的路径. (2)路径长度(Path Length):路径上的分支数. (3)树的路径长度(Path Length of Tree):从树的根结点到每个结点的路径长度之和.

C#数据结构与算法揭秘15

这节,我们主要讨论,一下克鲁斯卡尔算法实现 最小生成树.  克鲁斯卡尔算法的基本思想是:对一个有 n个顶点的无向连通网,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中:若形成回路,则将它舍     弃.如此进行下去,直到树中包含有 n-1条边为止. 以下图 (a)为例说明用克鲁斯卡尔算法求无向连通网最小生成树的过程. 第一步:首先比较网中所有边的权值,找到最小的权值的边(D,E),加入到生成树的边集 TE 中,TE={(D,E)}. 第二步:再比较图中除边(D,E)

C#数据结构与算法揭秘五

这节我们讨论了两种好玩的数据结构,栈和队列. 老样子,什么是栈, 所谓的栈是栈(Stack)是操作限定在表的尾端进行的线性表.表尾由于要进行插入.删除等操作,所以,它具有特殊的含义,把表尾称为栈顶(Top) ,另一端是固定的,叫栈底(Bottom) .当栈中没有数据元素时叫空栈(Empty Stack).这个类似于送饭的饭盒子,上层放的是红烧肉,中层放的水煮鱼,下层放的鸡腿.你要把这些菜取出来,这就引出来了栈的特点先进后出(First in last out).   具体叙述,加下图. 栈通常记

C#数据结构与算法揭秘16

这节我们就用的最多的算法--排序发起重点的讨论.   常见的排序分为冒泡排序,快速排序,直接插入排序 ,希尔排序,基数排序 ,简单选择排序 ,堆排序  等等. 一.冒泡排序 冒泡排序(Bubble Sort)的基本思想是:将相邻的记录的关键码进行比较,若前面记录的关键码大于后面记录的关键码,则将它们交换,否则不交换. 设待排序的顺序表 sqList 中有 n 个记录,冒泡排序要进行 n-1 趟,每趟循环均是从最后两个记录开始. 第 1 趟循环到第 2 个记录的关键码与第 1 个记录的关键码比较后

C#数据结构与算法揭秘11

这节,我们说一说,图的基本源代码的源代码实现.具体情况,请听我一一给大家娓娓道来. 图的基本操作用一个接口来表示,为表示图的基本操作,同时给出了顶点类的实现.由于顶点只保存自身信息,所以顶点类 Node<T>很简单,里面只有一个字段 data. 顶点的类 Node<T>的实现如下所示. public Class Node<T> { private T data; //数据域 //构造器 public Node(T v) { data = v; } //数据域属性 pub