OpenCV学习(19) 细化算法(7)

最后再来看一种通过形态学腐蚀和开操作得到骨架的方法。http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/

代码非常简单:

void gThin::cvmorphThin(cv::Mat& src, cv::Mat& dst)
    {

    if(src.type()!=CV_8UC1)
        {
        printf("只能处理二值或灰度图像\n");
        return;
        }
   //非原地操作时候,copy src到dst
    if(dst.data!=src.data)
        {
        src.copyTo(dst);
        }

    cv::Mat skel(dst.size(), CV_8UC1, cv::Scalar(0));
    cv::Mat temp(dst.size(), CV_8UC1);

    cv::Mat element = cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(3, 3));
    bool done;
    do
        {
        cv::morphologyEx(dst, temp, cv::MORPH_OPEN, element);
        cv::bitwise_not(temp, temp);
        cv::bitwise_and(dst, temp, temp);
        cv::bitwise_or(skel, temp, skel);
        cv::erode(dst, dst, element);

        double max;
        cv::minMaxLoc(dst, 0, &max);
        done = (max == 0);
        } while (!done);

        dst = skel;

    }

算法原理如下,就是通过十字型结构元素开操作的的补集和当前像素相与来作为骨架。当图像腐蚀为全0时候,就得到了整个图像的骨架。

img = ...;
while (not_empty(img))
{
    skel = skel | (img & !open(img));
    img = erosion(img);
}

程序源代码:工程FirstOpenCV11

时间: 2024-09-20 09:27:22

OpenCV学习(19) 细化算法(7)的相关文章

OpenCV学习(18) 细化算法(6)

本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示为00111000=0x38=56 我们可以枚举出各种情况下,当前像素能否删除的表,该表大小为256.它的索引即为8邻域表示的值,表中存的值为0或1,0表示当前像素不能删除,1表示可以删除.deletemark[256] 比如下图第一个表示,索引值为0,它表示孤立点,不能删除,所以deletemar

OpenCV学习(15) 细化算法(3)

      本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算法更好一些. 第一种算法描述参考paper和代码: Linear Skeletons from Square Cupboards Speedup Method for Real-Time Thinning Algorithm http://cis.k.hosei.ac.jp/~wakahara/Hi

OpenCV学习(14) 细化算法(2)

      前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样.在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读一下.       下面看看图像细化的定义以及细化算法的分类: 图像细化(Image Thinning),一般指二值图像的骨架化(Image Skel

OpenCV学习(17) 细化算法(5)

本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.html Computer VisiAlgorithms in Image Algebra,second edition 该算法最初是做前景轮廓跟踪的. 假设使用下面的8邻域,且前景像素值为1,背景像素值为0. 下面是该算

OpenCV学习(13) 细化算法(1)

程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digital patterns," Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984. 它的原理也很简单:       我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点.假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图

OpenCV学习(9) 分水岭算法(3)

本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark图像: 结果图像:       初始的mark图像数据如下,黄色的部分为我们的第一个mark区域,值为255,第二个区域为褐红色的区域,值为128,第三个绿色的区域,值为64.   opencv分水岭算法描述如下: 初始化mark矩阵,生成最初的注水区域. 1.设置mark图像的边框值为-1 2.

OpenCV学习(8) 分水岭算法(2)

    现在我们看看OpenCV中如何使用分水岭算法.     首先我们打开一副图像:    // 打开另一幅图像   cv::Mat    image= cv::imread("../tower.jpg");     if (!image.data)         {         cout<<"不能打开图像!"<<endl;         return 0;         }      接下来,我们要创建mark图像.mark图像

OpenCV学习(21) Grabcut算法详解

grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan.cn/QGDVdBXwkXutH      grab cut算法详细描述见资料中的pdf文件:"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts      grab cut算法是一种基于图论的图像分

(转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU

      首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址:http://blog.csdn.net/column/details/opencv-manual.html 2:部分OpenCV的函数解读和原理解读 作者:梦想腾飞数量:20篇博文网址:http:/