Oozie分布式任务的工作流——Sqoop篇

Sqoop的使用应该是Oozie里面最常用的了,因为很多BI数据分析都是基于业务数据库来做的,因此需要把mysql或者oracle的数据导入到hdfs中再利用mapreduce或者spark进行ETL,生成报表信息。

因此本篇的Sqoop Action其实就是运行一个sqoop的任务而已。

同样action会等到sqoop执行成功后,才会执行下一个action。为了运行sqoop action,需要提供job-tracker,name-node,command或者arg元素。

sqoop action也可以在开启任务前去创建或者删除hdfs中的目录。

sqoop action的配置可以通过job-xml指定文件进行配置,也可以直接在configuration元素中配置。

语法规则

<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:0.1">
    ...
    <action name="[NODE-NAME]">
        <sqoop xmlns="uri:oozie:sqoop-action:0.2">
            <job-tracker>[JOB-TRACKER]</job-tracker>
            <name-node>[NAME-NODE]</name-node>
            <prepare>
               <delete path="[PATH]"/>
               ...
               <mkdir path="[PATH]"/>
               ...
            </prepare>
            <configuration>
                <property>
                    <name>[PROPERTY-NAME]</name>
                    <value>[PROPERTY-VALUE]</value>
                </property>
                ...
            </configuration>
            <command>[SQOOP-COMMAND]</command>
            <arg>[SQOOP-ARGUMENT]</arg>
            ...
            <file>[FILE-PATH]</file>
            ...
            <archive>[FILE-PATH]</archive>
            ...
        </sqoop>
        <ok to="[NODE-NAME]"/>
        <error to="[NODE-NAME]"/>
    </action>
    ...
</workflow-app>
  • prepare元素,用于创建或者删除指定的hdfs目录。
  • job-xml可以指定sqoop action的参数配置
  • confuguration用于配置sqoop任务

sqoop command

sqoop命令可以通过command和arg标签组成。

当使用command元素时,oozie将会按照空格切分命令,作为参数。因此当你使用query的时候,就不能用command了!

当使用arg的时候,每个arg都是一个参数。

所有的参数部分,都可以使用EL表达式。

例子

基于command的例子

<workflow-app name="sample-wf" xmlns="uri:oozie:workflow:0.1">
    ...
    <action name="myfirsthivejob">
        <sqoop xmlns="uri:oozie:sqoop-action:0.2">
            <job-tracker>foo:8021</job-tracker>
            <name-node>bar:8020</name-node>
            <prepare>
                <delete path="${jobOutput}"/>
            </prepare>
            <configuration>
                <property>
                    <name>mapred.compress.map.output</name>
                    <value>true</value>
                </property>
            </configuration>
            <command>import  --connect jdbc:hsqldb:file:db.hsqldb --table TT --target-dir hdfs://localhost:8020/user/tucu/foo -m 1</command>
        </sqoop>
        <ok to="myotherjob"/>
        <error to="errorcleanup"/>
    </action>
    ...
</workflow-app>

基于arg元素的例子

<workflow-app name="sample-wf" xmlns="uri:oozie:workflow:0.1">
    ...
    <action name="myfirsthivejob">
        <sqoop xmlns="uri:oozie:sqoop-action:0.2">
            <job-tracker>foo:8021</job-tracker>
            <name-node>bar:8020</name-node>
            <prepare>
                <delete path="${jobOutput}"/>
            </prepare>
            <configuration>
                <property>
                    <name>mapred.compress.map.output</name>
                    <value>true</value>
                </property>
            </configuration>
            <arg>import</arg>
            <arg>--connect</arg>
            <arg>jdbc:hsqldb:file:db.hsqldb</arg>
            <arg>--table</arg>
            <arg>TT</arg>
            <arg>--target-dir</arg>
            <arg>hdfs://localhost:8020/user/tucu/foo</arg>
            <arg>-m</arg>
            <arg>1</arg>
        </sqoop>
        <ok to="myotherjob"/>
        <error to="errorcleanup"/>
    </action>
    ...
</workflow-app>

遇到的问题

经常会遇到这种问题:直接使用sqoop可以执行,但是在oozie中就无法执行了。这个时候可以按照下面的思路进行排查:

  • 1 oozie中的lib是否与sqoop相同。对比sqoop/lib以及oozie/lib/xxx/sqoop就可以了
  • 2 oozie中如果是以arg这种方式启动。那么问题很有可能出在query的别名以及split-by参数上.... 因为在sqoop中可以自动推断,但是在oozie中就无法知道字段所属的表了。

举个例子

sqoop --import .... --query "select a.*,b.* from t1 a left join t2 b on a.id=b.id..." --split-by id ...

这个时候oozie里面,无法知道id到底是哪个表的。需要指定它的别名才可以

...
<arg>--split-by</arg>
<arg>a.id</arg>
...

本文转自博客园xingoo的博客,原文链接:Oozie分布式任务的工作流——Sqoop篇,如需转载请自行联系原博主。

时间: 2024-10-24 18:37:30

Oozie分布式任务的工作流——Sqoop篇的相关文章

Oozie分布式任务的工作流——邮件篇

在大数据的当下,各种spark和hadoop的框架层出不穷.各种高端的计算框架,分布式任务如乱花般迷眼.你是否有这种困惑!--有了许多的分布式任务,但是每天需要固定时间跑任务,自己写个调度,既不稳定,又没有可靠的通知. 想要了解Oozie的基础知识,可以参考这里 那么你应该是在找--Oozie. Oozie是一款支持分布式任务调度的开源框架,它支持很多的分布式任务,比如map reduce,spark,sqoop,pig甚至shell等等.你可以以各种方式调度它们,把它们组成工作流.每个工作流节

Oozie分布式任务的工作流——脚本篇

继前一篇大体上翻译了Email的Action配置,本篇继续看一下Shell的相关配置. Shell Action Shell Action可以执行Shell脚本命令,工作流会等到shell完全执行完毕后退出,再执行下一个节点.为了运行shell,必须配置job-tracker以及name-node,并且设置exec来执行shell. Shell既可以使用job-xml引用一个配置文件,也可以在shell action内直接配置.shell action中的配置会覆盖job-xml中的配置. EL

Oozie分布式任务的工作流——Spark篇

Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri

Oozie分布式工作流——Action节点

前篇讲述了下什么是流控制节点,本篇继续来说一下什么是 Action Nodes操作节点.Action节点有一些比较通用的特性: Action节点是远程的 所有oozie创建的计算和处理任务都是异步的,没有任何应用是工作在oozie内部的.基本上都是创建一个oozie任务,oozie任务会以map的形式,在各个节点再创建相应的任务.因此当你执行spark任务的时候,就会发现yarn集群监控列表里面会同时有两个任务出现. Action节点是异步的 oozie创建的任务都是异步的,对于大多数的任务来说

Oozie分布式工作流——流控制

最近又开始捅咕上oozie了,所以回头还是翻译一下oozie的文档.文档里面最重要就属这一章了--工作流定义. 一提到工作流,首先想到的应该是工作流都支持哪些工作依赖关系,比如串式的执行,或者一对多,或者多对一,或者条件判断等等.Oozie在这方面支持的很好,它把节点分为控制节点和操作节点两种类型,控制节点用于控制工作流的计算流程,操作节点用于封装计算单元.本篇就主要描述下它的控制节点... 背景 先看看oozie工作流里面的几个定义: action,一个action是一个独立的任务,比如map

Oozie分布式工作流——从理论和实践分析使用节点间的参数传递

Oozie支持Java Action,因此可以自定义很多的功能.本篇就从理论和实践两方面介绍下Java Action的妙用,另外还涉及到oozie中action之间的参数传递. 本文大致分为以下几个部分: Java Action教程文档 自定义Java Action实践 从源码的角度讲解Java Action与Shell Action的参数传递. 如果你即将或者想要使用oozie,那么本篇的文章将会为你提供很多参考的价值. Java Action文档 java action会自动执行提供的jav

大数据学习之路(持续更新中...)

在16年8月份至今,一直在努力学习大数据大数据相关的技术,很想了解众多老司机的学习历程.因为大数据涉及的技术很广需要了解的东西也很多,会让很多新手望而却步.所以,我就在自己学习的过程中总结一下学到的内容以及踩到的一些坑,希望得到老司机的指点和新手的借鉴. 前言 在学习大数据之前,先要了解他解决了什么问题,能给我们带来什么价值.一方面,以前IT行业发展没有那么快,系统的应用也不完善,数据库足够支撑业务系统.但是随着行业的发展,系统运行的时间越来越长,搜集到的数据也越来越多,传统的数据库已经不能支撑

工作流调度器azkaban安装

概述 2.1.1为什么需要工作流调度系统 一个完整的数据分析系统通常都是由大量任务单元组成: shell脚本程序,java程序,mapreduce程序.hive脚本等 各任务单元之间存在时间先后及前后依赖关系 为了很好地组织起这样的复杂执行计划,需要一个工作流调度系统来调度执行; 例如,我们可能有这样一个需求,某个业务系统每天产生20G原始数据,我们每天都要对其进行处理,处理步骤如下所示: 1. 通过Hadoop先将原始数据同步到HDFS上; 2. 借助MapReduce计算框架对原始数据进行转

谈谈分布式事务之四: 两种事务处理协议OleTx与WS-AT

在年前写一个几篇关于分布式事务的文章,实际上这些都是为了系统介绍WCF事务处理体系而提供的相关的背景和基础知识.今天发最后一篇,介绍分布式事务采用的两种协议,即OleTx和WS-AT,内容比较枯燥,但对于后续对WCF事务处理框架进行深入剖析的系列文章来说,确是不可以缺少的.总的来说,基于WCF的分布式事务采用的是两阶段提交(2PC:Two Phase Commit)协议.具体来说,我们可以选择如下两种事务处理协议实现WCF的分布式式事务,它们按照各自的方式提供了对两阶段提交的实现. OleTx: