《实施Cisco统一通信管理器(CIPT1)》——2.7 总结

2.7 总结

实施Cisco统一通信管理器(CIPT1)
本章着重论述了以下内容。

CUCM的部署模型有:单站点、多站点集中式呼叫处理、多站点分布式呼叫处理、以及穿越IP WAN的集群。
在单站点部署模型中,CUCM应用和DSP资源位于同一物理位置。PSTN负责所有的外部呼叫。
多站点集中式模型中只有1个CUCM集群。应用和DSP资源既可集中在同一位置,也可分布在不同站点。IP WAN负责承载呼叫控制信令,其中包括远端站点内的呼叫。
多站点分布式模型中有多个独立的站点,每个站点属于1个CUCM集群。IP WAN只负责承载站点间呼叫。
穿越IP WAN的集群提供了集中式管理、统一的拨号计划、可以扩展到所有分支办公室的特性;另外,在故障切换期间,该模型还可以支持更多的远端电话,但需要在WAN链路上实施严格的延迟和带宽限制。
可以使用集群来实现冗余。1∶1冗余设计方案可以提供最高级别的可用性,但是它所需的资源也相当多,并且这种方案没有2∶1冗余部署方案经济实惠。

时间: 2024-10-23 20:21:54

《实施Cisco统一通信管理器(CIPT1)》——2.7 总结的相关文章

《LDA漫游指南》——第2章 前置知识

第2章 前置知识 LDA漫游指南 本章所描述的工具和线索在后期LDA算法的采样公式推导中会全部明了.关于为什么需要使用这些知识要素,这里面有很长的一段历史渊源,比如在概率论和数理统计中,gamma函数被广泛使用,而在最终的LDA采样公式中,你会发现,gamma函数被神奇地消失了.我们在后面的章节中可以看到,LDA算法的精妙之处在于用令人屏息的洞察力作为纽带,将零散的部件全部组合在一起. 2.1 gamma函数 所谓的gamma函数其实就是阶乘的函数形式,即n!=1⋅2⋅3-n.如果我问你3的阶乘

《LDA漫游指南》——第1章 背景

第1章 背景 LDA漫游指南 LDA算法使用的全部知识的渊源可以追溯到18世纪的欧拉.欧拉(Leonhard Euler ,1707年4月15日-1783年9月18日),瑞士数学家,如图1-1所示.欧拉一生贡献颇丰,1734年,欧拉因解决巴塞尔问题而出名,巴塞尔问题见式(1.1)的值是多少. (1.1) 这个问题困扰了数学家长达几个世纪的,当时的数学家只知道该级数的值小于2,但不知道精确值,欧拉准确的推导出该式的值等于π^2/6.欧拉的方法聪明而新颖,他创造性地将有限多项式的观察推广到无穷级数,

《LDA漫游指南》——2.3 Beta分布(Beta distribution)

2.3 Beta分布(Beta distribution) 在概率论中,Beta分布是指一组定义在区间(0,1)的连续概率分布,有两个参数alpha 和beta ,且alpha ,beta > 0. Beta分布的概率密度函数是 (2.5) 随机变量X服从参数为的Beta分布通常写作:Xsim Beta(alpha ,beta ). 这个式子中分母的函数B(alpha ,beta )称为beta函数. 两种证明方法这里我们来证明一个重要的公式,该公式中的关系在LDA算法Gibbs Samplin

《LDA漫游指南》——2.6 共轭先验分布(conjugacy prior)

2.6 共轭先验分布(conjugacy prior) In Bayesian probability theory, if the posterior distributions p(θ |x) are in the same family as the prior probability distribution p(θ), the prior and posterior are then called conjugate distributions, and the prior is ca

《LDA漫游指南》——2.7 总结

2.7 总结 1. 贝叶斯学派采用给参数赋予先验分布,并使得先验与后验共轭,通过求后验均值来得到参数的估计,频率学派通过某个优化准则,比如最大化似然函数来求得参数的估计:不管是哪个学派思想,都要用到似然函数.注意到似然函数有所不同,这点在极大似然估计(MLE)和最大后验概率估计(MAP)体现得尤其明显. 2.当拥有无限数据量时(Beta分布式中的s和f都趋向于无穷,Dirichlet分布式中的m趋向于无穷),贝叶斯方法和频率学派方法所得到的参数估计是一致的.当在有限的数据量下,贝叶斯学派的参数后

《LDA漫游指南》——2.2 二项分布(Binomial distribution)

2.2 二项分布(Binomial distribution) 在概率论中,二项分布即重复n次独立的伯努利试验.在每次试验中只有两种可能的结果(成功/失败),每次成功的概率为p,而且两种结果发生与否互相对立,并且相互独立,与其他各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布. 在给出二项分布之前,我们来做一个例子,假设你在玩CS这个游戏,你拿着狙击枪,敌人出现,你打中敌人的概率是p,打不中敌人的概率是

《LDA漫游指南》——2.4 多项分布(multinomial distribution)

2.4 多项分布(multinomial distribution) 多项分布[1]是二项分布的推广扩展,在n次独立试验中每次只输出k种结果中的一个,且每种结果都有一个确定的概率p.多项分布给出了在多种输出状态的情况下,关于成功次数的各种组合的概率. 举个例子,投掷n次骰子,这个骰子共有6种结果输出,且1点出现概率为p_1,2点出现概率p_2,--多项分布给出了在n次试验中,骰子1点出现x_1次,2点出现x_2次,3点出现x_3次,-,6点出现x_6次.这个结果组合的概率为 式(2.8)为多项分

《LDA漫游指南》——2.5 狄利克雷分布(Dirichlet Distribution)

2.5 狄利克雷分布(Dirichlet Distribution) Dirichlet分布是Beta分布在多项情况下的推广,也是多项分布的共轭先验分布(共轭先验分布将在2.6节进行介绍).Dirichlet分布的概率密度函数如下: 二项分布和多项分布很相似,Beta分布和Dirichlet 分布很相似,至于"Beta分布是二项式分布的共轭先验概率分布,而Dirichlet分布是多项式分布的共轭先验概率分布"这点会在下文中进行说明. 另一个重要的公式是 为了简便表达,公式中引入了希腊字

[python] LDA处理文档主题分布代码入门笔记

以前只知道LDA是个好东西,但自己并没有真正去使用过.同时,关于它的文章也非常之多,推荐大家阅读书籍<LDA漫游指南>,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验.这篇文章主要是讲述Python下LDA的基础用法,希望对大家有所帮助.如果文章中有错误或不足之处,还请海涵~ 一. 下载安装 LDA推荐下载地址包括:其中前三个比较常用.        gensim下载地址:https://radimrehurek.com/gensim/models/ldamodel.ht

前端知识图谱,你值得收藏

综合类 - [前端知识体系](http://www.cnblogs.com/sb19871023/p/3894452.html) - [前端知识结构](https://github.com/JacksonTian/fks) - [Web前端开发大系概览](https://github.com/unruledboy/WebFrontEndStack) - [Web前端开发大系概览-中文版](http://www.cnblogs.com/unruledboy/p/WebFrontEndStack.h