CUDA从入门到精通(十):性能剖析和Visual Profiler

 
 

入门后的进一步学习的内容,就是如何优化自己的代码。我们前面的例子没有考虑任何性能方面优化,是为了更好地学习基本知识点,而不是其他细节问题。从本节开始,我们要从性能出发考虑问题,不断优化代码,使执行速度提高是并行处理的唯一目的。

测试代码运行速度有很多方法,C语言里提供了类似于SystemTime()这样的API获得系统时间,然后计算两个事件之间的时长从而完成计时功能。在CUDA中,我们有专门测量设备运行时间的API,下面一一介绍。

 

翻开编程手册《CUDA_Toolkit_Reference_Manual》,随时准备查询不懂得API。我们在运行核函数前后,做如下操作:

cudaEvent_t start,stop;//事件对象
cudaEventCreate(&start);//创建事件
cudaEventCreate(&stop);//创建事件
cudaEventRecord(start,stream);//记录开始
myKernel<<<dimg,dimb,size_smem,stream>>>(parameter list);//执行核函数

cudaEventRecord(stop,stream);//记录结束事件
cudaEventSynchronize(stop);//事件同步,等待结束事件之前的设备操作均已完成
float elapsedTime;
cudaEventElapsedTime(&elapsedTime,start,stop);//计算两个事件之间时长(单位为ms)

 

 

核函数执行时间将被保存在变量elapsedTime中。通过这个值我们可以评估算法的性能。下面给一个例子,来看怎么使用计时功能。

前面的例子规模很小,只有5个元素,处理量太小不足以计时,下面将规模扩大为1024,此外将反复运行1000次计算总时间,这样估计不容易受随机扰动影响。我们通过这个例子对比线程并行和块并行的性能如何。代码如下:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);
__global__ void addKernel_blk(int *c, const int *a, const int *b)
{
    int i = blockIdx.x;
    c[i] = a[i]+ b[i];
}
__global__ void addKernel_thd(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = a[i]+ b[i];
}
int main()
{
    const int arraySize = 1024;
    int a[arraySize] = {0};
    int b[arraySize] = {0};
	for(int i = 0;i<arraySize;i++)
	{
		a[i] = i;
		b[i] = arraySize-i;
	}
    int c[arraySize] = {0};
    // Add vectors in parallel.
    cudaError_t cudaStatus;
	int num = 0;
	cudaDeviceProp prop;
	cudaStatus = cudaGetDeviceCount(&num);
	for(int i = 0;i<num;i++)
	{
		cudaGetDeviceProperties(&prop,i);
	}
	cudaStatus = addWithCuda(c, a, b, arraySize);
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "addWithCuda failed!");
        return 1;
    }

    // cudaThreadExit must be called before exiting in order for profiling and
    // tracing tools such as Nsight and Visual Profiler to show complete traces.
    cudaStatus = cudaThreadExit();
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaThreadExit failed!");
        return 1;
    }
    for(int i = 0;i<arraySize;i++)
	{
		if(c[i] != (a[i]+b[i]))
		{
			printf("Error in %d\n",i);
		}
	}
    return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)
{
    int *dev_a = 0;
    int *dev_b = 0;
    int *dev_c = 0;
    cudaError_t cudaStatus;

    // Choose which GPU to run on, change this on a multi-GPU system.
    cudaStatus = cudaSetDevice(0);
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
        goto Error;
    }
    // Allocate GPU buffers for three vectors (two input, one output)    .
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    // Copy input vectors from host memory to GPU buffers.
    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
	cudaEvent_t start,stop;
	cudaEventCreate(&start);
	cudaEventCreate(&stop);
	cudaEventRecord(start,0);
	for(int i = 0;i<1000;i++)
	{
//		addKernel_blk<<<size,1>>>(dev_c, dev_a, dev_b);
		addKernel_thd<<<1,size>>>(dev_c, dev_a, dev_b);
	}
	cudaEventRecord(stop,0);
	cudaEventSynchronize(stop);
	float tm;
	cudaEventElapsedTime(&tm,start,stop);
	printf("GPU Elapsed time:%.6f ms.\n",tm);
    // cudaThreadSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaThreadSynchronize();
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
        goto Error;
    }
    // Copy output vector from GPU buffer to host memory.
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
    if (cudaStatus != cudaSuccess)
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
Error:
    cudaFree(dev_c);
    cudaFree(dev_a);
    cudaFree(dev_b);
    return cudaStatus;
}

 

addKernel_blk是采用块并行实现的向量相加操作,而addKernel_thd是采用线程并行实现的向量相加操作。分别运行,得到的结果如下图所示:

线程并行:

块并行:

 

可见性能竟然相差近16倍!因此选择并行处理方法时,如果问题规模不是很大,那么采用线程并行是比较合适的,而大问题分多个线程块处理时,每个块内线程数不要太少,像本文中的只有1个线程,这是对硬件资源的极大浪费。一个理想的方案是,分N个线程块,每个线程块包含512个线程,将问题分解处理,效率往往比单一的线程并行处理或单一块并行处理高很多。这也是CUDA编程的精髓。

 

上面这种分析程序性能的方式比较粗糙,只知道大概运行时间长度,对于设备程序各部分代码执行时间没有一个深入的认识,这样我们就有个问题,如果对代码进行优化,那么优化哪一部分呢?是将线程数调节呢,还是改用共享内存?这个问题最好的解决方案就是利用Visual Profiler。下面内容摘自《CUDA_Profiler_Users_Guide》

“Visual Profiler是一个图形化的剖析工具,可以显示你的应用程序中CPU和GPU的活动情况,利用分析引擎帮助你寻找优化的机会。”

其实除了可视化的界面,NVIDIA提供了命令行方式的剖析命令:nvprof。对于初学者,使用图形化的方式比较容易上手,所以本节使用Visual Profiler。

 

打开Visual Profiler,可以从CUDA Toolkit安装菜单处找到。主界面如下:

我们点击File->New Session,弹出新建会话对话框,如下图所示:

其中File一栏填入我们需要进行剖析的应用程序exe文件,后面可以都不填(如果需要命令行参数,可以在第三行填入),直接Next,见下图:

第一行为应用程序执行超时时间设定,可不填;后面三个单选框都勾上,这样我们分别使能了剖析,使能了并发核函数剖析,然后运行分析器。

点Finish,开始运行我们的应用程序并进行剖析、分析性能。

上图中,CPU和GPU部分显示了硬件和执行内容信息,点某一项则将时间条对应的部分高亮,便于观察,同时右边详细信息会显示运行时间信息。从时间条上看出,cudaMalloc占用了很大一部分时间。下面分析器给出了一些性能提升的关键点,包括:低计算利用率(计算时间只占总时间的1.8%,也难怪,加法计算复杂度本来就很低呀!);低内存拷贝/计算交叠率(一点都没有交叠,完全是拷贝——计算——拷贝);低存储拷贝尺寸(输入数据量太小了,相当于你淘宝买了个日记本,运费比实物价格还高!);低存储拷贝吞吐率(只有1.55GB/s)。这些对我们进一步优化程序是非常有帮助的。

 

我们点一下Details,就在Analysis窗口旁边。得到结果如下所示:

 

通过这个窗口可以看到每个核函数执行时间,以及线程格、线程块尺寸,占用寄存器个数,静态共享内存、动态共享内存大小等参数,以及内存拷贝函数的执行情况。这个提供了比前面cudaEvent函数测时间更精确的方式,直接看到每一步的执行时间,精确到ns。

在Details后面还有一个Console,点一下看看。

这个其实就是命令行窗口,显示运行输出。看到加入了Profiler信息后,总执行时间变长了(原来线程并行版本的程序运行时间只需4ms左右)。这也是“测不准定理”决定的,如果我们希望测量更细微的时间,那么总时间肯定是不准的;如果我们希望测量总时间,那么细微的时间就被忽略掉了。

 

后面Settings就是我们建立会话时的参数配置,不再详述。

 

通过本节,我们应该能对CUDA性能提升有了一些想法,好,下一节我们将讨论如何优化CUDA程序。

时间: 2024-10-26 05:30:30

CUDA从入门到精通(十):性能剖析和Visual Profiler的相关文章

CUDA从入门到精通(九):线程通信实例

接着上一节,我们利用刚学到的共享内存和线程同步技术,来做一个简单的例子.先看下效果吧:   很简单,就是分别求出1~5这5个数字的和,平方和,连乘积.相信学过C语言的童鞋都能用for循环做出同上面一样的效果,但为了学习CUDA共享内存和同步技术,我们还是要把简单的东西复杂化(^_^).   简要分析一下,上面例子的输入都是一样的,1,2,3,4,5这5个数,但计算过程有些变化,而且每个输出和所有输入都相关,不是前几节例子中那样,一个输出只和一个输入有关.所以我们在利用CUDA编程时,需要针对特殊

CUDA从入门到精通(零):写在前面

在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择.还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能给学习CUDA的童鞋提供一定指导.个人能力所及,错误难免,欢迎讨论.   PS:申请专栏好像需要先发原创帖超过15篇...算了,先写够再申请吧,到时候一并转

CUDA从入门到精通(二):第一个CUDA程序

  书接上回,我们既然直接运行例程成功了,接下来就是了解如何实现例程中的每个环节.当然,我们先从简单的做起,一般编程语言都会找个helloworld例子,而我们的显卡是不会说话的,只能做一些简单的加减乘除运算.所以,CUDA程序的helloworld,我想应该最合适不过的就是向量加了. 打开VS2008,选择File->New->Project,弹出下面对话框,设置如下: 之后点OK,直接进入工程界面. 工程中,我们看到只有一个.cu文件,内容如下: #include "cuda_r

CUDA从入门到精通(六):块并行

同一版本的代码用了这么多次,有点过意不去,于是这次我要做较大的改动,大家要擦亮眼睛,拭目以待.   块并行相当于操作系统中多进程的情况,上节说到,CUDA有线程组(线程块)的概念,将一组线程组织到一起,共同分配一部分资源,然后内部调度执行.线程块与线程块之间,毫无瓜葛.这有利于做更粗粒度的并行.我们将上一节的代码改为块并行版本如下:   #include "cuda_runtime.h" #include "device_launch_parameters.h" #

CUDA从入门到精通(七):流并行

前面我们没有讲程序的结构,我想有些童鞋可能迫不及待想知道CUDA程序到底是怎么一个执行过程.好的,这一节在介绍流之前,先把CUDA程序结构简要说一下. CUDA程序文件后缀为.cu,有些编译器可能不认识这个后缀的文件,我们可以在VS2008的Tools->Options->Text Editor->File Extension里添加cu后缀到VC++中,如下图:   一个.cu文件内既包含CPU程序(称为主机程序),也包含GPU程序(称为设备程序).如何区分主机程序和设备程序?根据声明,

CUDA从入门到精通(五):线程并行

多线程我们应该都不陌生,在操作系统中,进程是资源分配的基本单元,而线程是CPU时间调度的基本单元(这里假设只有1个CPU). 将线程的概念引申到CUDA程序设计中,我们可以认为线程就是执行CUDA程序的最小单元,前面我们建立的工程代码中,有个核函数概念不知各位童鞋还记得没有,在GPU上每个线程都会运行一次该核函数. 但GPU上的线程调度方式与CPU有很大不同.CPU上会有优先级分配,从高到低,同样优先级的可以采用时间片轮转法实现线程调度.GPU上线程没有优先级概念,所有线程机会均等,线程状态只有

CUDA从入门到精通(一):环境搭建

NVIDIA于2006年推出CUDA(Compute Unified Devices Architecture),可以利用其推出的GPU进行通用计算,将并行计算从大型集群扩展到了普通显卡,使得用户只需要一台带有Geforce显卡的笔记本就能跑较大规模的并行处理程序.   使用显卡的好处是,和大型集群相比功耗非常低,成本也不高,但性能很突出.以我的笔记本为例,Geforce 610M,用DeviceQuery程序测试,可得到如下硬件参数: 计算能力达48X0.95 = 45.6 GFLOPS.而笔

CUDA从入门到精通(四):加深对设备的认识

前面三节已经对CUDA做了一个简单的介绍,这一节开始真正进入编程环节. 首先,初学者应该对自己使用的设备有较为扎实的理解和掌握,这样对后面学习并行程序优化很有帮助,了解硬件详细参数可以通过上节介绍的几本书和官方资料获得,但如果仍然觉得不够直观,那么我们可以自己动手获得这些内容.   以第二节例程为模板,我们稍加改动的部分代码如下: // Add vectors in parallel. cudaError_t cudaStatus; int num = 0; cudaDeviceProp pro

CUDA从入门到精通(三):必备资料

刚入门CUDA,跑过几个官方提供的例程,看了看人家的代码,觉得并不难,但自己动手写代码时,总是不知道要先干什么,后干什么,也不知道从哪个知识点学起.这时就需要有一本能提供指导的书籍或者教程,一步步跟着做下去,直到真正掌握. 一般讲述CUDA的书,我认为不错的有下面这几本:     初学者可以先看美国人写的这本<GPU高性能编程CUDA实战>,可操作性很强,但不要期望能全看懂(Ps:里面有些概念其实我现在还是不怎么懂),但不影响你进一步学习.如果想更全面地学习CUDA,<GPGPU编程技术