企业大数据安全分析的四大关键要点

文章讲的是企业大数据安全分析的四大关键要点,ESG公布的一项研究表明,44%的企业认为其所采用的安全数据收集与分析机制可以被归类为“大数据”方案;另外44%的企业则认为其所采用的安全数据收集与分析机制在未来两年内将能够被归类为“大数据”方案。(备注:在此次调查中,大数据安全分析机制被定义为“安全数据集迅猛增长,总量之庞大已经很难利用现有安全分析工具进行处理”。)

  因此,企业很可能会在未来几年内开始尝试某些类型的大数据安全分析产品或者解决方案。也就是说,笔者所接触的很多CISO(首席信息安全官)仍然对这一新兴安全方案类型感到困惑,而且需要他人的帮助破解炒作谜团。

  大数据安全分析常见问题为尚处于迷茫状态的安全管理者们施以援手。文章中对大数据安全分析方案做出了基本定义,任何一种大数据安全分析机制都必须具备庞大的规模处理能力以及灵活的查询功能,但企业应该如何在众多产品当中做出选择?

  由于安全行业对于缩写有着特殊的喜好,因此我建议各位安全专家从AVCA四大方面做出考量——它们分别代表算法(Algorithms)、可视化(Visualization)、背景(Context)以及自动化(Automation)。

  • 算法。在大数据安全分析领域,算法代表手动与自动分析机制之间的差异。在算法的帮助下,企业分析师们能够获得来自智能化技术的支持;失去算法的帮助,他们将被迫亲自面对日益庞大的数据总量。大数据安全分析算法应该将数据、处理能力以及定制规则以极高精度融合在一起。具体实例包括机器学习(例如21CT、LogRhythem以及SilverTail等)以及异常行为预测(例如Click Security、Lancope、Netskope以及Solera Networks等)。很多企业还会将Splunk作为自己的定制算法基础。

  • 可视化。数据可视化在安全领域的应用仍然处于起步阶段,主要包括通过饼状图、曲线图以及Excel数据透视表等方式加以呈现。虽然可视化技术还属于新兴课题,但目前已经有越来越多的相关研究及开发工作处于进行当中,大部分源自美国国家实验室以及各大学术机构。另外,每年在亚特兰大乔治亚举办的VizSec大会(www.vizsec.org)也致力于推动网络安全研究与数据可视化发展。随着时间的推移,CISO们将在这一领域迎来飞跃式变革,其中包括新型可视化硬件、类列表数据处理、3D图形匹配模式、风险评分分析以及数据维度旋转等。目前值得关注的相关厂商有LexisNexis、Hexis Cyber Solutions以及Narus等。

  • 背景。当恶意软件将矛头指向未安装最新补丁的系统时,情况就变得非常危急。然而当恶意软件尝试进攻已经安装了补丁的系统时,事态则没那么严重。随着时间推移,大数据安全分析将与连续监测下的威胁检测/取证相结合,共同针对相关网络攻击做出风险评分。McAfee公司将通过对McAfee安全管理器(即Nitro)与ePO加以整合来推动这一进程。RSA也将通过其大数据安全分析机制与Archer的桥接实现同样的目标。惠普在这条道路上同样拥有自己的规划。

  • 自动化。类似于由IDS向IPS的过渡,自动化进程可能会由于安全人员对误报状况的担忧而进展缓慢。不过安全自动化机制的普及能够帮助安全人员紧跟不断增长的实际需求。思科公司将利用其网络基础设施、SDN以及基于云计算的大数据安全智能方案实现网络安全自动化。以Check Point以及Palo Alto Networks为代表的其它网络安全厂商也将踏上这段征程。IBM同样表现积极,有意将其网络安全产品组合(即ISS)、Trusteer(即端点安全方案)、QRadar、IBM Security Intelligence、大数据以及X-force安全情报方案进行整合。

  安全专家在对大数据安全分析产品进行研究及评估时,应当确保将AVCA作为规范要求中的组成部分。而从供应商的角度出发,良好的AVCA实现能力将成为通往成功的有效助力。

作者:核子可乐 编译 

来源:IT168

原文链接:企业大数据安全分析的四大关键要点

时间: 2024-11-18 23:54:17

企业大数据安全分析的四大关键要点的相关文章

大数据安全分析的6个要点

现在,很多行业都已 经开始利用大数据来提高销售,降 低成本,精准营销等等.然而, 其实大数据在网络安全与信息安全方面也有很长足的应用.特别是利用大数据来甄别和发现风险和漏洞.498)this.width=498;' onmousewheel = 'javascript:return big(this)' style="width: 455px; height: 254px" border="0" alt="大数据安全分析的 6个要点" width

大数据安全分析:学习Facebook的ThreatData框架

在本文中,专家Kevin Beaver将探讨企业如何学习Facebook的ThreatData框架安全分析来加强企业防御.自成立以来,Facebook一直是网络攻击的目标.他们积极抵御恶意软件和防止欺诈,并且他们在这方面的努力经常见诸报端.然而,可以很公平地说,Facebook面临的实际威胁更加严峻.当面对威胁时,知识就是力量.很多企业都 认识到威胁分析和安全分析的重要性,它们不仅可以帮助阻止当前威胁,还可以提高事件响应.最近,Facebook宣布通过其ThreatData框架进军大数据安全分析

盘点:企业对大数据安全分析的6大要点

现在,很多行业都已经开始利用大数据来提高销售,降低成本,精准营销等等.然而,其实大数据在网络安全与信息安全方面也有很长足的应用.特别是利用大数据来甄别和发现风险和漏洞. 通过大数据,人们可以分析大量的潜在安全事件,找出它们之间的联系从而勾勒出一个完整的安全威胁.通过大数据,分散的数据可以被整合起来,使得安全人员能够采用更加主动的安全防御手段. 今天,http://www.aliyun.com/zixun/aggregation/16327.html">网络环境极为复杂,APT攻击以及其他一

大数据安全分析“架构”

根据ESG研究公司表示,44%的大型企业(即拥有超过1000名员工的企业) 认为其安全数据收集和分析是"大数据"应用,而另外44%认为其安全数据收集和分析将会在未来2年内成为"大数据"应用.此外,86%的企业正在收集比两年前"更多"或"略多"的安全数据.这种增长趋势非常明显,大型企业正在收集.处理和保存越来越多的数据用于分析,他们使用来自IBM.Lancope.LogRhythm.Raytheon.RSA Security和S

大数据安全分析(理念篇)

一.引言 单纯的防御措施无法阻止蓄意的攻击者,这已经是大家都认同的事实,应对挑战业界有了诸多方面的探索和实践,而其中最有趣的就非安全分析莫属了,围绕着安全分析展开,我们可以看到大数据.安全智能.情景感知.威胁情报.数据挖掘.可视化等等,因为这些都是安全分析师手中的武器. 下面想针对个人有一定了解的地方,具体谈几个方面,每个方面单独成为一篇: 1.安全分析的相关背景及理念 2.安全分析中的狩猎(Hunting)和事件响应 3.安全分析与可视化 4.安全分析相关技能 今年的RSA大会主题是"变化,挑

揭秘大数据安全分析”架构”

根据ESG研究公司表示,44%的大型企业(即拥有超过1000名员工的企业)认为其安全数据收集和分析是"大数据"应用,而另外44%认为其安全数据收集和分析将会在未来2年内成为"大数据"应用.此外,86%的企业正在收集比两年前"更多"或"略多"的安全数据. 大数据安全分析"架构" 这种增长趋势非常明显,大型企业正在收集.处理和保存越来越多的数据用于分析,他们使用来自IBM.Lancope.LogRhythm.R

从东风号到和谐号,探秘启明星辰大数据安全分析平台

经过10年的发展,中国在高速铁路的建设和发展上取得了举世瞩目的成就,目前已经拥有全世界最大规模以及最高运营速度的高速铁路网.从最早的时速100公里的"东风号"内燃机车到最新的最高时速486公里的"和谐号"高速动车,中国铁路技术实现了快速跨越式发展,局部技术上已经走在了世界的前列. 同样,在信息安全领域,启明星辰公司也集安全分析和安全管理平台技术之大成,十年磨一剑,率先在国内推出了大数据安全分析平台,一举将中国信息安全分析和安全管理从"东风"号内燃

SIEM方兴未艾 瀚思是如何进行大数据安全分析的?

ZD至顶网安全频道 10月29日 综合消息: 一直以"数据驱动安全"为愿景,致力于利用大数据帮助企业解决庞杂.分立的信息安全问题的瀚思(HanSight)科技今天在北京召开媒体见面会.瀚思创始人兼首席执行官高瀚昭.瀚思联合创始人董昕出席了本次活动,并与参会媒体分享了瀚思在大数据安全分析领域的成果. 大数据和安全息息相关 什么是大数据?大数据(Big Data)是指所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到抽取.管理.处理.并整理成为积极的信息,帮助企业经营决策.

大数据安全分析不容忽视的三个真相

文章讲的是大数据安全分析不容忽视的三个真相,大数据分析工具与分布式数据库确实蕴藏着巨大潜力,有可能改变安全监控与调查工作的执行方式.然而这些与汇总安全数据并加速分析流程的创新途径也会带来很多不必要的麻烦. 这不仅是因为比起供应商们的卖力宣传,这些工具与服务其实很难被纳入业务流程当中,而且它们还会给不加批判使用这类方案的安全部门带来大量潜在风险.这一结论来自Rapid7公司首席研究官兼安全研究员H.D.Moore本周早些时候在本届于波士顿举行的联合国安全大会上的发言. 根据Moore的观点,大数据