排序算法总结

1、冒泡排序

冒泡排序是一种简单的排序方法,算法如下:
1. 首先将所有待排序的数字放入工作列表中。
2. 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
3. 重复2号步骤(倒数的数字加1。例如:第一次到倒数第二个数字,第二次到倒数第三个数字,依此类推...),直至再也不能交换。
用C语言实现如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

int BubbleSort(int *a, int n)    //a是待排序的整型数组,n是待排序数组的元素个数

{

   int i,j,temp;

    for(j=0;j<n-1;j++)

        for(i=0;i<n-1-j;i++)

        {

            if(a[i]>a[i+1])        //数组元素大小按升序排列

            {

                temp=a[i];

                a[i]=a[i+1];

                a[i+1]=temp;

            }

        }

2、插入排序

插入排序也是一种简单排序方法,算法如下:
1. 从第一个元素开始,认为该元素已经是排好序的。
2. 取下一个元素,在已经排好序的元素序列中从后向前扫描。
3. 如果已经排好序的序列中元素大于新元素,则将该元素往右移动一个位置。
4. 重复步骤3,直到已排好序的元素小于或等于新元素。
5. 在当前位置插入新元素。
6. 重复步骤2。
用C实现如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

int insert(int *a, int n)

{

    int i, j, temp;

    for(i=1; i<n; i++)

    {

        temp=a[i];

        for(j=i; j>0 && a[j-1]>temp; j--)

            a[j]=a[j-1];

 

        a[j]=temp;

    }

3、选择排序

选择排序的思想如下:
1. 设数组内存放了n个待排数字,数组下标从1开始,到n结束。
2. i=1
3. 从数组的第i个元素开始到第n个元素,寻找最小的元素。(具体过程为:先设arr[i]为最小,逐一比较,若遇到比之小的则交换)
4. 将上一步找到的最小元素和第i位元素交换。
5. 如果i=n-1算法结束,否则回到第3步
用C语言实现如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int sort(int *a, int n)

{

    int i, j, min, temp;

    for(i=0; i<n; i++)

    {

        min=i;

        for(j=i+1; j<n; j++)

            if(a[min]>a[j])

                min=j;

 

        if(min != i)

        {

            temp=a[min];

            a[min]=a[i];

            a[i]=temp;

        }

    }

4、快速排序

(a)一趟排序的过程:

(b)排序的全过程

        实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。
快速排序的基本算法是:
1. 从数列中挑出一个元素,称为 "基准"(pivot),
2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。
3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
用C语言实现如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

void QuickSort(int a[],int numsize)    /*a是整形数组,numsize是元素个数*/

{

 int i=0, j=numsize-1;

 int val=a[0];    /*指定参考值val大小*/

 if(numsize>1)    /*确保数组长度至少为2,否则无需排序*/

 {

     while(i<j)    /*循环结束条件*/

     {

 /*从后向前搜索比val小的元素,找到后填到a[i]中并跳出循环*/

         for(j;j>i;j--)

             if(a[j]<val)

             {

                 a[i++]=a[j];

                 break;

             }

 /*从前往后搜索比val大的元素,找到后填到a[j]中并跳出循环*/

         for(i;i<j;i++)

             if(a[i]>val)

             {

                 a[j--]=a[i];

                 break;

             }

         }

         a[i]=val;    /*将保存在val中的数放到a[i]中*/

         QuickSort(a,i);    /*递归,对前i个数排序*/

         QuickSort(a+i+1,numsize-i-1);    /*对i+2到numsize这numsize-1-i个数排序*/

     }

}

 

5、希尔排序是不稳定的。

算法思想简单描述:

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。

下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。

希尔排序是不稳定的。

输入:数组名称(也就是数组首地址)、数组中元素个数

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

void shell_sort(int *x, int n)

{

     int h, j, k, t;

    for (h=n/2; h>0; h=h/2) /*控制增量*/

    {

       for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/

       {

           t = *(x+j);

           for (k=j-h; (k>=0 && t<*(x+k)); k-=h)

            {

               *(x+k+h) = *(x+k);

            }

           *(x+k+h) = t;

       }

    }

}

 

6、堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。

堆排序是不稳定的。算法时间复杂度O(nlog2n)。

功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

void sift(int *x, int n, int s)

{

    int t, k, j;

    t = *(x+s); /*暂存开始元素*/

    k = s;   /*开始元素下标*/

    j = 2*k + 1; /*右子树元素下标*/

    while (j<n)

    {

       if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/

       {

            j++;

       }

       if (t<*(x+j)) /*调整*/

       {

            *(x+k) = *(x+j);

            k = j; /*调整后,开始元素也随之调整*/

            j = 2*k + 1;

       }

       else /*没有需要调整了,已经是个堆了,退出循环。*/

       {

            break;

       }

    }

    *(x+k) = t; /*开始元素放到它正确位置*/

}

功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

void heap_sort(int *x, int n)

{

    int i, k, t;

    int *p;

    for (i=n/2-1; i>=0; i--)

    {

       sift(x,n,i); /*初始建堆*/

    }

    for (k=n-1; k>=1; k--)

    {

       t = *(x+0); /*堆顶放到最后*/

       *(x+0) = *(x+k);

       *(x+k) = t;

       sift(x,k,0); /*剩下的数再建堆*/ 

    }

}

 

几种常见排序算法的介绍及复杂度分析

相关概念

1、稳定排序(stable sort)和非稳定排序

稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。反之就是非稳定排序。

2、内排序(internal sorting)和外排序(external sorting)

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

 

排序算法

【冒泡排序】(Bubble Sort)

冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。 

冒泡排序是稳定的。算法时间复杂度是O(n2)。 

【选择排序】(Selection Sort)

选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第 i 遍处理是将[i..n]中最小者与位置 i 交换位置。这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。 

选择排序是不稳定的。算法复杂度是O(n2 )。 

 

【插入排序】(Insertion Sort)

插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L和L[i-1],如果L[i-1]≤ L,则L[1..i]已排好序,第i遍处理就结束了;否则交换L与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

直接插入排序是稳定的。算法时间复杂度是O(n2) 

 

【堆排序】(Heap Sort)

堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。 

堆排序是不稳定的。算法时间复杂度O(nlog2n)。 

 

【归并排序】(Merge Sort)

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序是稳定的。其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。 

 

【快速排序】(Quick Sort)

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。 

 

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。

 

各排序方法对比

冒泡排序算法时间复杂度是O(n^2)

选择排序算法时间复杂度是O(n^2)

插入排序算法时间复杂度是O(n^2)

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n^2)。

堆排序算法时间复杂度是O(nlogn)

归并排序算法时间复杂度是O(nlogn)

 

1.基本概念 

1.1稳定排序(stable sort)和非稳定排序 

稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。 

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5, 

则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。 

1.2内排序( internal sorting )和外排序( external sorting) 
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 

1.3算法的时间复杂度和空间复杂度 

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 

2.几种常见算法 

2.1冒泡排序 (Bubble Sort) 
冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。 

冒泡排序是稳定的。算法时间复杂度是O(n2)。 

2.2选择排序 (Selection Sort) 
选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。 

选择排序是不稳定的。算法复杂度是O(n2 )。 

2.3插入排序 (Insertion Sort) 
插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L和L[i-1],如果L[i-1]≤ L,则L[1..i]已排好序,第i遍处理就结束了;否则交换L与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。 

直接插入排序是稳定的。算法时间复杂度是O(n2) 

2.4堆排序 
堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。 

堆排序是不稳定的。算法时间复杂度O(nlog n)。 

2.5归并排序 
设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。 

归并排序是稳定的。其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。 

2.6快速排序 
快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。 

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。

 

时间: 2024-08-26 06:02:57

排序算法总结的相关文章

PHP 四种基本排序算法的代码实现(1)

许多人都说算法是程序的核心,算法的好坏决定了程序的质量.作为一个初级phper,虽然很少接触到算法方面的东西.但是对于基本的排序算法还是应该掌握的,它是程序开发的必备工具.这里介绍冒泡排序,插入排序,选择排序,快速排序四种基本算法,分析一下算法的思路. 前提:分别用冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中的值按照从小到大的顺序进行排序. $arr(1,43,54,62,21,66,32,78,36,76,39); 1. 冒泡排序 思路分析:在要排序的一组数中,对当前还未排好的序

常用的各种排序算法

//常用的排序算法 #include <iostream> using namespace std; typedef int ElemType; /* 1.插入排序 (1)直接插入排序算法 算法思想:将等排序列划分为有序与无序两部分,然后再依次将无序部分插入到已经有序的部分,最后 就可以形成有序序列. 操作步骤如下: 1)查找出元素L(i)在表中的插入位置K: 2)将表中的第K个元素之前的元素依次后移一个位置: 3)将L(i)复制到L(K). 时间复杂度为:O(n^2) */ void Ins

各种排序算法汇总

目录 简介 交换排序 冒泡排序 快速排序 插入排序 直接插入排序 希尔排序 选择排序 简单选择排序 堆排序 归并排序 基数排序 总结 简介 排序是计算机内经常进行的一种操作,其目的是将一组"无序"的记录序列调整为"有序"的记录序列.分内部排序和外部排序.若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序.反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序.内部排序的过程是一个逐步扩大记录的有序序列长度的过程

九大排序算法总结

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等. 算法一:插入排序 插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入. 算法步骤 1)将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当

内部排序算法:基数排序

基本思想 基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较.由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数. 基数排序可以采用两种方式: LSD(Least Significant Digital):从待排序元素的最右边开始计算(如果是数字类型,即从最低位个位开始). MSD(Most Significant Digital):从待排序元素的最左边开始计算(如果是数字类型,即从最高位开始). 我们以L

桶排序算法

桶排序 (Bucket sort)或所谓的箱排序,是一个排序算法,工作的原理是将数组分到有限数量的桶子里.每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序).桶排序是鸽巢排序的一种归纳结果.当要被排序的数组内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n)).但桶排序并不是比较排序,他不受到 O(n log n) 下限的影响. 本文地址:http://www.cnblogs.com/archimedes/p/bucket-sort-algorithm.html

python实现的希尔排序算法实例

  本文实例讲述了python实现希尔排序算法的方法.分享给大家供大家参考.具体如下: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 def shellSort(items): inc = len(items) / 2 while inc: for i in xrange(len(items)): j = i temp = items[i] while j >= inc and items[j-inc] > temp: items[j] = items[j - inc]

常见的五类排序算法图解和实现(多关键字排序:基数排序以及各个排序算法的总结)

基数排序思想 完全不同于以前的排序算法,可以说,基数排序也叫做多关键字排序,基数排序是一种借助"多关键字排序"的思想来实现"单关键字排序"的内部排序算法. 两种方式: 1.最高位优先,先按照最高位排成若干子序列,再对子序列按照次高位排序 2.最低位优先:不必分子序列,每次排序全体元素都参与,不比较,而是通过分配+收集的方式. 多关键字排序 例:将下表所示的学生成绩单按数学成绩的等级由高到低排序,数学成绩相同的学生再按英语成绩的高低等级排序.        第一个关键

JavaScript版几种常见排序算法分享

说明 ·  每个浏览器测试得出的数据会不一样.比如我用chrome 测试 一般快速排序都会最快,IE 则根据数组长度有可能希尔最快. ·  不要用太大数据去测试冒泡排序(浏览器崩溃了我不管) 个人理解 ·  冒泡排序:最简单,也最慢,貌似长度小于7最优 ·  插入排序: 比冒泡快,比快速排序和希尔排序慢,较小数据有优势 ·  快速排序:这是一个非常快的排序方式,V8的sort方法就使用快速排序和插入排序的结合 ·  希尔排序:在非chrome下数组长度小于1000,希尔排序比快速更快 ·  系统

用Java实现几种常见的排序算法

排序|算法 用Java语言实现的各种排序,包括插入排序.冒泡排序.选择排序.Shell排序.快速排序.归并排序.堆排序.SortUtil等. 插入排序: package org.rut.util.algorithm.support; import org.rut.util.algorithm.SortUtil;/** * @author treeroot * @since 2006-2-2 * @version 1.0 */public class InsertSort implements S