Java和Android的LRU缓存及实现原理_Android

一、概述

Android提供了LRUCache类,可以方便的使用它来实现LRU算法的缓存。Java提供了LinkedHashMap,可以用该类很方便的实现LRU算法,Java的LRULinkedHashMap就是直接继承了LinkedHashMap,进行了极少的改动后就可以实现LRU算法。

二、Java的LRU算法

Java的LRU算法的基础是LinkedHashMap,LinkedHashMap继承了HashMap,并且在HashMap的基础上进行了一定的改动,以实现LRU算法。

1、HashMap

首先需要说明的是,HashMap将每一个节点信息存储在Entry<K,V>结构中。Entry<K,V>中存储了节点对应的key、value、hash信息,同时存储了当前节点的下一个节点的引用。因此Entry<K,V>是一个单向链表。HashMap的存储结构是一个数组加单向链表的形式。每一个key对应的hashCode,在HashMap的数组中都可以找到一个位置;而如果多个key对应了相同的hashCode,那么他们在数组中对应在相同的位置上,这时,HashMap将把对应的信息放到Entry<K,V>中,并使用链表连接这些Entry<K,V>。

 static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    int hash;

    /**
     * Creates new entry.
     */
    Entry(int h, K k, V v, Entry<K,V> n) {
      value = v;
      next = n;
      key = k;
      hash = h;
    }

    public final K getKey() {
      return key;
    }

    public final V getValue() {
      return value;
    }

    public final V setValue(V newValue) {
      V oldValue = value;
      value = newValue;
      return oldValue;
    }

    public final boolean equals(Object o) {
      if (!(o instanceof Map.Entry))
        return false;
      Map.Entry e = (Map.Entry)o;
      Object k1 = getKey();
      Object k2 = e.getKey();
      if (k1 == k2 || (k1 != null && k1.equals(k2))) {
        Object v1 = getValue();
        Object v2 = e.getValue();
        if (v1 == v2 || (v1 != null && v1.equals(v2)))
          return true;
      }
      return false;
    }

    public final int hashCode() {
      return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
    }

    public final String toString() {
      return getKey() + "=" + getValue();
    }

    /**
     * This method is invoked whenever the value in an entry is
     * overwritten by an invocation of put(k,v) for a key k that's already
     * in the HashMap.
     */
    void recordAccess(HashMap<K,V> m) {
    }

    /**
     * This method is invoked whenever the entry is
     * removed from the table.
     */
    void recordRemoval(HashMap<K,V> m) {
    }
  }

   下面贴一下HashMap的put方法的代码,并进行分析

public V put(K key, V value) {
    if (table == EMPTY_TABLE) {
      inflateTable(threshold);
    }
    if (key == null)
      return putForNullKey(value);

     //以上信息不关心,下面是正常的插入逻辑。

     //首先计算hashCode
    int hash = hash(key);
     //通过计算得到的hashCode,计算出hashCode在数组中的位置
    int i = indexFor(hash, table.length);

     //for循环,找到在HashMap中是否存在一个节点,对应的key与传入的key完全一致。如果存在,说明用户想要替换该key对应的value值,因此直接替换value即可返回。
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
      Object k;
      if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
        V oldValue = e.value;
        e.value = value;
        e.recordAccess(this);
        return oldValue;
      }
    }

     //逻辑执行到此处,说明HashMap中不存在完全一致的kye.调用addEntry,新建一个节点保存key、value信息,并增加到HashMap中
    modCount++;
    addEntry(hash, key, value, i);
    return null;
  }

  在上面的代码中增加了一些注释,可以对整体有一个了解。下面具体对一些值得分析的点进行说明。

<1> int i = indexFor(hash, table.length);

可以看一下源码:

 static int indexFor(int h, int length) {
    // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
    return h & (length-1);
  }

 为什么获得的hashCode(h)要和(length-1)进行按位与运算?这是为了保证去除掉h的高位信息。如果数组大小为8(1000),而计算出的h的值为10(1010),如果直接获取数组的index为10的数据,肯定会抛出数组超出界限异常。所以使用按位与(0111&1010),成功清除掉高位信息,得到2(0010),表示对应数组中index为2的数据。效果与取余相同,但是位运算的效率明显更高。

但是这样有一个问题,如果length为9,获取得length-1信息为8(1000),这样进行位运算,不但不能清除高位数据,得到的结果肯定不对。所以数组的大小一定有什么特别的地方。通过查看源码,可以发现,HashMap无时无刻不在保证对应的数组个数为2的n次方。

首先在put的时候,调用inflateTable方法。重点在于roundUpToPowerOf2方法,虽然它的内容包含大量的位相关的运算和处理,没有看的很明白,但是注释已经明确了,会保证数组的个数为2的n次方。

private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);

threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}

其次,在addEntry等其他位置,也会使用(2 * table.length)、table.length << 1等方式,保证数组的个数为2的n次方。

<2> for (Entry<K,V> e = table[i]; e != null; e = e.next)

因为HashMap使用的是数组加链表的形式,所以通过hashCode获取到在数组中的位置后,得到的不是一个Entry<K,V>,而是一个Entry<K,V>的链表,一定要循环链表,获取key对应的value。

<3> addEntry(hash, key, value, i);

先判断数组个数是否超出阈值,如果超过,需要增加数组个数。然后会新建一个Entry,并加到数组中。

/**
   * Adds a new entry with the specified key, value and hash code to
   * the specified bucket. It is the responsibility of this
   * method to resize the table if appropriate.
   *
   * Subclass overrides this to alter the behavior of put method.
   */
  void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
      resize(2 * table.length);
      hash = (null != key) ? hash(key) : 0;
      bucketIndex = indexFor(hash, table.length);
    }

    createEntry(hash, key, value, bucketIndex);
  }

  /**
   * Like addEntry except that this version is used when creating entries
   * as part of Map construction or "pseudo-construction" (cloning,
   * deserialization). This version needn't worry about resizing the table.
   *
   * Subclass overrides this to alter the behavior of HashMap(Map),
   * clone, and readObject.
   */
  void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
  }

    2、LinkedHashMap

LinkedHashMap在HashMap的基础上,进行了修改。首先将Entry由单向链表改成双向链表。增加了before和after两个队Entry的引用。

 private static class Entry<K,V> extends HashMap.Entry<K,V> {
    // These fields comprise the doubly linked list used for iteration.
    Entry<K,V> before, after;

    Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
      super(hash, key, value, next);
    }

    /**
     * Removes this entry from the linked list.
     */
    private void remove() {
      before.after = after;
      after.before = before;
    }

    /**
     * Inserts this entry before the specified existing entry in the list.
     */
    private void addBefore(Entry<K,V> existingEntry) {
      after = existingEntry;
      before = existingEntry.before;
      before.after = this;
      after.before = this;
    }

    /**
     * This method is invoked by the superclass whenever the value
     * of a pre-existing entry is read by Map.get or modified by Map.set.
     * If the enclosing Map is access-ordered, it moves the entry
     * to the end of the list; otherwise, it does nothing.
     */
    void recordAccess(HashMap<K,V> m) {
      LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
      if (lm.accessOrder) {
        lm.modCount++;
        remove();
        addBefore(lm.header);
      }
    }

    void recordRemoval(HashMap<K,V> m) {
      remove();
    }
  }

  同时,LinkedHashMap提供了一个对Entry的引用header(private transient Entry<K,V> header)。header的作用就是永远只是HashMap中所有成员的头(header.after)和尾(header.before)。这样把HashMap本身的数组加链表的格式进行了修改。在LinkedHashMap中,即保留了HashMap的数组加链表的数据保存格式,同时增加了一套header作为开始标记的双向链表(我们暂且称之为header的双向链表)。LinkedHashMap就是通过header的双向链表来实现LRU算法的。header.after永远指向最近最不常使用的那个节点,删除的话,就是删除这个header.after对应的节点。相对的,header.before指向的就是刚刚使用过的那个节点。

LinkedHashMap并没有提供put方法,但是LinkedHashMap重写了addEntry和createEntry方法,如下:

 /**
   * This override alters behavior of superclass put method. It causes newly
   * allocated entry to get inserted at the end of the linked list and
   * removes the eldest entry if appropriate.
   */
  void addEntry(int hash, K key, V value, int bucketIndex) {
    super.addEntry(hash, key, value, bucketIndex);

    // Remove eldest entry if instructed
    Entry<K,V> eldest = header.after;
    if (removeEldestEntry(eldest)) {
      removeEntryForKey(eldest.key);
    }
  }

  /**
   * This override differs from addEntry in that it doesn't resize the
   * table or remove the eldest entry.
   */
  void createEntry(int hash, K key, V value, int bucketIndex) {
    HashMap.Entry<K,V> old = table[bucketIndex];
    Entry<K,V> e = new Entry<>(hash, key, value, old);
    table[bucketIndex] = e;
    e.addBefore(header);
    size++;
  }

   HashMap的put方法,调用了addEntry方法;HashMap的addEntry方法又调用了createEntry方法。因此可以把上面的两个方法和HashMap中的内容放到一起,方便分析,形成如下方法:

 void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
      resize(2 * table.length);
      hash = (null != key) ? hash(key) : 0;
      bucketIndex = indexFor(hash, table.length);
    }

    HashMap.Entry<K,V> old = table[bucketIndex];
    Entry<K,V> e = new Entry<>(hash, key, value, old);
    table[bucketIndex] = e;
    e.addBefore(header);
    size++;

    // Remove eldest entry if instructed
    Entry<K,V> eldest = header.after;
    if (removeEldestEntry(eldest)) {
      removeEntryForKey(eldest.key);
    }
  }

 同样,先判断是否超出阈值,超出则增加数组的个数。然后创建Entry对象,并加入到HashMap对应的数组和链表中。与HashMap不同的是LinkedHashMap增加了e.addBefore(header);和removeEntryForKey(eldest.key);这样两个操作。

首先分析一下e.addBefore(header)。其中e是LinkedHashMap.Entry对象,addBefore代码如下,作用就是讲header与当前对象相关联,使当前对象增加到header的双向链表的尾部(header.before):

  private void addBefore(Entry<K,V> existingEntry) {
      after = existingEntry;
      before = existingEntry.before;
      before.after = this;
      after.before = this;
    }

  其次是另一个重点,代码如下:

  // Remove eldest entry if instructed
    Entry<K,V> eldest = header.after;
    if (removeEldestEntry(eldest)) {
      removeEntryForKey(eldest.key);
    }

     其中,removeEldestEntry判断是否需要删除最近最不常使用的那个节点。LinkedHashMap中的removeEldestEntry(eldest)方法永远返回false,如果我们要实现LRU算法,就需要重写这个方法,判断在什么情况下,删除最近最不常使用的节点。removeEntryForKey的作用就是将key对应的节点在HashMap的数组加链表结构中删除,源码如下:

 final Entry<K,V> removeEntryForKey(Object key) {
    if (size == 0) {
      return null;
    }
    int hash = (key == null) ? 0 : hash(key);
    int i = indexFor(hash, table.length);
    Entry<K,V> prev = table[i];
    Entry<K,V> e = prev;

    while (e != null) {
      Entry<K,V> next = e.next;
      Object k;
      if (e.hash == hash &&
        ((k = e.key) == key || (key != null && key.equals(k)))) {
        modCount++;
        size--;
        if (prev == e)
          table[i] = next;
        else
          prev.next = next;
        e.recordRemoval(this);
        return e;
      }
      prev = e;
      e = next;
    }

    return e;
  }

 removeEntryForKey是HashMap的方法,对LinkedHashMap中header的双向链表无能为力,而LinkedHashMap又没有重写这个方法,那header的双向链表要如何处理呢。

仔细看一下代码,可以看到在成功删除了HashMap中的节点后,调用了e.recordRemoval(this);方法。这个方法在HashMap中为空,LinkedHashMap的Entry则实现了这个方法。其中remove()方法中的两行代码为双向链表中删除当前节点的标准代码,不解释。

 /**
     * Removes this entry from the linked list.
     */
    private void remove() {
      before.after = after;
      after.before = before;
    }void recordRemoval(HashMap<K,V> m) {
      remove();
    }

      以上,LinkedHashMap增加节点的代码分析完毕,可以看到完美的将新增的节点放在了header双向链表的末尾。

但是,这样显然是先进先出的算法,而不是最近最不常使用算法。需要在get的时候,更新header双向链表,把刚刚get的节点放到header双向链表的末尾。我们来看看get的源码:

public V get(Object key) {
    Entry<K,V> e = (Entry<K,V>)getEntry(key);
    if (e == null)
      return null;
    e.recordAccess(this);
    return e.value;
  }

  代码很短,第一行的getEntry调用的是HashMap的getEntry方法,不需要解释。真正处理header双向链表的代码是e.recordAccess(this)。看一下代码:

   /**
     * Removes this entry from the linked list.
     */
    private void remove() {
      before.after = after;
      after.before = before;
    }

    /**
     * Inserts this entry before the specified existing entry in the list.
     */
    private void addBefore(Entry<K,V> existingEntry) {
      after = existingEntry;
      before = existingEntry.before;
      before.after = this;
      after.before = this;
    }

    /**
     * This method is invoked by the superclass whenever the value
     * of a pre-existing entry is read by Map.get or modified by Map.set.
     * If the enclosing Map is access-ordered, it moves the entry
     * to the end of the list; otherwise, it does nothing.
     */
    void recordAccess(HashMap<K,V> m) {
      LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
      if (lm.accessOrder) {
        lm.modCount++;
        remove();
        addBefore(lm.header);
      }
    }

  首先在header双向链表中删除当前节点,再将当前节点添加到header双向链表的末尾。当然,在调用LinkedHashMap的时候,需要将accessOrder设置为true,否则就是FIFO算法。

三、Android的LRU算法

Android同样提供了HashMap和LinkedHashMap,而且总体思路有些类似,但是实现的细节明显不同。而且Android提供的LruCache虽然使用了LinkedHashMap,但是实现的思路并不一样。Java需要重写removeEldestEntry来判断是否删除节点;而Android需要重写LruCache的sizeOf,返回当前节点的大小,Android会根据这个大小判断是否超出了限制,进行调用trimToSize方法清除多余的节点。

Android的sizeOf方法默认返回1,默认的方式是判断HashMap中的数据个数是否超出了设置的阈值。也可以重写sizeOf方法,返回当前节点的大小。Android的safeSizeOf会调用sizeOf方法,其他判断阈值的方法会调用safeSizeOf方法,进行加减操作并判断阈值。进而判断是否需要清除节点。

Java的removeEldestEntry方法,也可以达到同样的效果。Java需要使用者自己提供整个判断的过程,两者思路还是有些区别的。

sizeOf,safeSizeOf不需要说明,而put和get方法,虽然和Java的实现方式不完全一样,但是思路是相同的,也不需要分析。在LruCache中put方法的最后,会调用trimToSize方法,这个方法用于清除超出的节点。它的代码如下:

 public void trimToSize(int maxSize)
 {
  while (true)
  {
   Object key;
   Object value;
   synchronized (this) {
    if ((this.size < 0) || ((this.map.isEmpty()) && (this.size != 0))) {
     throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!");
    }
      if (size <= maxSize) {
        break;
      }

    Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();

    key = toEvict.getKey();
    value = toEvict.getValue();
    this.map.remove(key);
    this.size -= safeSizeOf(key, value);
    this.evictionCount += 1;
   }

   entryRemoved(true, key, value, null);
  }
 }

 重点需要说明的是Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行代码。它前面的代码判断是否需要删除最近最不常使用的节点,后面的代码用于删除具体的节点。这行代码用于获取最近最不常使用的节点。

首先需要说明的问题是,Android的LinkedHashMap和Java的LinkedHashMap在思路上一样,也是使用header保存双向链表。在put和get的时候,会更新对应的节点,保存header.after指向最久没有使用的节点;header.before用于指向刚刚使用过的节点。所以Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next();这行最终肯定是获取header.after节点。下面逐步分析代码,就可以看到是如何实现的了。

首先,map.entrySet(),HashMap定义了这个方法,LinkedHashMap没有重写这个方法。因此调用的是HashMap对应的方法:

public Set<Entry<K, V>> entrySet() {
    Set<Entry<K, V>> es = entrySet;
    return (es != null) ? es : (entrySet = new EntrySet());
  }

上面代码不需要细说,new一个EntrySet类的实例。而EntrySet也是在HashMap中定义,LinkedHashMap中没有。

private final class EntrySet extends AbstractSet<Entry<K, V>> {
    public Iterator<Entry<K, V>> iterator() {
      return newEntryIterator();
    }
    public boolean contains(Object o) {
      if (!(o instanceof Entry))
        return false;
      Entry<?, ?> e = (Entry<?, ?>) o;
      return containsMapping(e.getKey(), e.getValue());
    }
    public boolean remove(Object o) {
      if (!(o instanceof Entry))
        return false;
      Entry<?, ?> e = (Entry<?, ?>)o;
      return removeMapping(e.getKey(), e.getValue());
    }
    public int size() {
      return size;
    }
    public boolean isEmpty() {
      return size == 0;
    }
    public void clear() {
      HashMap.this.clear();
    }
  }

  Iterator<Entry<K, V>> newEntryIterator() { return new EntryIterator(); }

代码中很明显的可以看出,Map.Entry toEvict = (Map.Entry)this.map.entrySet().iterator().next(),就是要调用

newEntryIterator().next(),就是调用(new EntryIterator()).next()。而EntryIterator类在LinkedHashMap中是有定义的。

  private final class EntryIterator
      extends LinkedHashIterator<Map.Entry<K, V>> {
    public final Map.Entry<K, V> next() { return nextEntry(); }
  }

  private abstract class LinkedHashIterator<T> implements Iterator<T> {
    LinkedEntry<K, V> next = header.nxt;
    LinkedEntry<K, V> lastReturned = null;
    int expectedModCount = modCount;

    public final boolean hasNext() {
      return next != header;
    }

    final LinkedEntry<K, V> nextEntry() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      LinkedEntry<K, V> e = next;
      if (e == header)
        throw new NoSuchElementException();
      next = e.nxt;
      return lastReturned = e;
    }

    public final void remove() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      if (lastReturned == null)
        throw new IllegalStateException();
      LinkedHashMap.this.remove(lastReturned.key);
      lastReturned = null;
      expectedModCount = modCount;
    }
  }

现在可以得到结论,trimToSize中的那行代码得到的就是header.next对应的节点,也就是最近最不常使用的那个节点。

以上就是对Android Java LRU缓存的实现原理做的详解,后续继续补充相关资料,谢谢大家对本站的支持!

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索android
, RUL缓存
, 和java
RUL
lru缓存实现、redis缓存原理与实现、缓存实现原理、缓存的实现原理、缓存命中率实现原理,以便于您获取更多的相关知识。

时间: 2025-01-21 04:35:25

Java和Android的LRU缓存及实现原理_Android的相关文章

Java和Android的LRU缓存及实现原理

一.概述 Android提供了LRUCache类,可以方便的使用它来实现LRU算法的缓存.Java提供了LinkedHashMap,可以用该类很方便的实现LRU算法,Java的LRULinkedHashMap就是直接继承了LinkedHashMap,进行了极少的改动后就可以实现LRU算法. 二.Java的LRU算法 Java的LRU算法的基础是LinkedHashMap,LinkedHashMap继承了HashMap,并且在HashMap的基础上进行了一定的改动,以实现LRU算法. 1.Hash

Android基于SoftReference缓存图片的方法_Android

本文实例讲述了Android基于SoftReference缓存图片的方法.分享给大家供大家参考,具体如下: Java中的SoftReference即对象的软引用.如果一个对象具有软引用,内存空间足够,垃圾回收器就不会回收它:如果内存空间不足了,就会回收这些对象的内存.只要垃圾回收器没有回收它,该对象就可以被程序使用.软引用可用来实现内存敏感的高速缓存.使用软引用能防止内存泄露,增强程序的健壮性. SoftReference的特点是它的一个实例保存对一个Java对象的软引用,该软引用的存在不妨碍垃

详解Android中实现热更新的原理_Android

这篇文章就来介绍一下Android中实现热更新的原理. 一.ClassLoader 我们知道Java在运行时加载对应的类是通过ClassLoader来实现的,ClassLoader本身是一个抽象来,Android中使用PathClassLoader类作为Android的默认的类加载器,PathClassLoader其实实现的就是简单的从文件系统中加载类文件.PathClassLoade本身继承自BaseDexClassLoader,BaseDexClassLoader重写了findClass方法

详解Android中Handler的内部实现原理_Android

本文主要是对Handler和消息循环的实现原理进行源码分析,如果不熟悉Handler可以参见博文<详解Android中Handler的使用方法>,里面对Android为何以引入Handler机制以及如何使用Handler做了讲解. 概括来说,Handler是Android中引入的一种让开发者参与处理线程中消息循环的机制.我们在使用Handler的时候与Message打交道最多,Message是Hanlder机制向开发人员暴露出来的相关类,可以通过Message类完成大部分操作Handler的功

Android仿QQ登陆窗口实现原理_Android

今天根据腾讯qq,我们做一个练习,来学习如何制作一个漂亮的布局.首先看一下官方图片 还是一个启动画面,之后进入登录页面,导航页面就不介绍了,大家可以参考微信的导航页面.首先程序进入SplashActivity,就是启动页面,Activity代码如下: 复制代码 代码如下: package com.example.imitateqq; import android.app.Activity; import android.content.Intent; import android.os.Bund

Java 实现 LRU 缓存的两个实例

Java 自定义实现 LRU 缓存算法 LinkedHashMap继承自HashMap,内部提供了一个removeEldestEntry方法,该方法正是实现LRU策略的关键所在,且HashMap内部专门为LinkedHashMap提供了3个专用回调方法,afterNodeAccess.afterNodeInsertion.afterNodeRemoval,这3个方法的字面意思非常容易理解,就是节点访问后.节点插入后.节点删除后分别执行的行为.基于以上行为LinkedHashMap就可以实现一个L

Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公

最新内容建议直接访问原文: Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公共类) 总结的一些android公共库,包含缓存(图片缓存.预取缓存).公共View(下拉及底部加载更多ListView.底部加载更多ScrollView.滑动一页Gallery).及工具类(下载管理.静默安装.shell工具类等等). 具体使用可见总结的一些android公共库.Demo APK地址见TrineaAndroidDemo,主要包括: 一. 缓存类 主要特

Android图片缓存之Lru算法(二)_Android

前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小,点击查看.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发生的概率呢?之前我们一直在使用SoftReference软引用,SoftReference是一种现在已经不再推荐使用的方式,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用变得不再可靠,所以今天我们来认识一种新的缓

android实现缓存图片等数据_Android

采用LinkedHashMap自带的LRU 算法缓存数据, 可检测对象是否已被虚拟机回收,并且重新计算当前缓存大小,清除缓存中无用的键值对象(即已经被虚拟机回收但未从缓存清除的数据):  * 默认内存缓存大小为: 4 * 1024 * 1024 可通过通过setMaxCacheSize重新设置缓存大小,可手动清空内存缓存  * <br>支持内存缓存和磁盘缓存方式, 通过 {@link cc.util.cache.NetByteWrapper} 支持HTTP缓存 (注:详细参考cc.util.h