数据分析师常见的十个问题

1、如何做好数据分析?

分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你的商业意识、数据分析思维、技能得到提升,广积粮,缓称王,实现厚积而薄发。

  2、如何做好数据挖掘?

数据挖掘和数据分析在我认为,都是实现数据价值的“工具”、“方式”。数据挖掘相对于数据分析来说,入门门槛会更高一些,对于数据挖掘方法,挖掘工具要求更高。但做好数据挖掘,参考数据分析。

3、需要看什么类型的书?

很从刚做分析师的朋友,但喜欢问:我想做好分析师要看什么样的书?这个背后的逻辑是不是说你看了别人推荐给你的书,你就可以成为很厉害的分析师。

我的观点是:书是一定要看,而且有机会的时候多看看书。但一定要明白看书你对的价值体现在哪?

但数据分析更多是干,实践中成长的。

4、做好数据分析需求什么样的技能?

我想做数据分析,一定要会SAS、SPSS、R吗?如果你不去做模型。

基本的统计知识肯定要掌握的,但分析师目前主要还是以SQL+EXCEL+PPT来完成一份分析报告。

5、什么专业才能做数据分析?

现在招聘数据分析大多数都是要求:计算机、统计学相关专业。但是我相信未来数据分析招聘的专业会越来越宽,而且很多管理类(营销、管理学、情报学等)专业毕业的人会是比较受欢迎的。因为当大家对数据分析理解越来越深的时候,会发现数据分析核心的能力还是在:分析数据,然后与商业结合。

6、数据分析的价值?

基于历史数据,来告诉相关人的业务情况是怎么样的,结合对于公司业务模式的理解,一起制定相关策略,帮忙公司实现业务目标。

基于公司内、外部的数据,结合分析师对于公司业务的理解、行业发展趋势的理解,提出公司及行业发展趋势,为公司制定相应的战略提供参考。

如果从精典的数据价值金字塔来说,如果你仅提供数据,你不是数据分析,那在做最最传统的BI的工作,给出数据。如果你给出了信息,恭喜你已经开始在做数据分析了,如果给出"知识"(在我认为,就是给你的观点,建议,方案,而且是基于数据得到的),欢迎你进入到数据分析师的世界。如果你能数据产品(对于什么是数据产品,我们后续再讨论)把知识深沉下来,bingo,你是一名出色的数据分析师。

7、数据分析,到底是分析什么数据?

分析公司内、外部的数据,内部的数据有以下几类(以电子商务为例):

1、流量数据或者说网站的点击流(日志)数据。

2、订单数据。

3、商品数据。

4、会员数据。

5、供应链相关数据。

6、客服数据。

不同公司对于数据收集的粒度、完整性不一样。是否所有公司都要把所有的数据都收集下来,我的观点是:如果允许,当然越多越好。但是很多是时候是要分析师对评估哪些数据需求收集,保存多久的数据。分析师一定要用一定ROI的意识。

那种数据都没有积累多少,就号称自己是大数据公司,号称通过大数据建议竞争优势,你觉得可能吗?

8、数据分析有几种角色?

数据分析:助理分析师、分析师、资深数据分析/数据分析专家、商业分析师;

数据产品经理:我特别喜欢这种角度,我觉得的真正的数据分析师,应该有产品的思维逻辑。因为不管你在做报表,报告,系统,那怕是一个简单的数据需求,你都可以理解为一种数据产品。(什么是产品,产品是解决目标用户的问题。请分析师都牢记这一点。)

数据挖掘:数据挖掘工程师、资深挖掘工程师;

9、什么样的人适合做数据分析?

除了之前我的一些文章讨论到的需要相关的基本的技能外,也许下面的内容对一个数据分析师成长更为重要:

1、看到数据有兴奋感的人。有兴奋感说明你有兴趣,那说明很会有意愿把数据分析好。

2、愿意学习的人。你分析的内容永远不会一尘不变,即使你分析的主题是相对固定,但业务是变化的,你需要不断的学习业务,同不同人沟通,吸收别人的观点。所以分析师一定要报着学习的态度。

3、逻辑思维较强的人。数据分析师想要把你的分析好,一定要有结论思维。

4、表达与沟通。因为数据分析最终价值的实现,一般来说不会是分析师亲自去制定或者实施。所以你一定很有条理、逻辑清晰向别人表达,让业务方认识到你分析结果的价值,从而影响业务方去愿意使用你从数据中得到的观点。

10、数据分析的职位发展怎么样?

一个很厉害的分析师应该怎么样?

临时需求—业务监控—专题分析—驱动业务

我把一个分析师经历以下几个阶段:

1、业务方说什么按其需求给什么。偶尔对你的数据还会有怀疑。

2、业务方说什么给什么,在对需求背景,目标理解的基础,会增加一些相关数据。业务方认可。

3、业务方意识到分析师的价值,主动找你沟通。沟通后,为业务方设计相应指标,开发相应的报表监控业务进展,通过数据可以及时定位问题。

4、开始写分析报告。围绕一个主题进行分析,给出分析报告,与业务方一起沟通去让你的分析结果落地。

5、你走到业务方前面,针对其业务进行主动分析,影响业务方,让业务方围绕你的分析结论来开展,有一定的数据驱动业务味道。

多久才能成长为一名资深数据分析师?

每个公司或者个人对于资深数据分析师的理解可能不一样。

我的理解是:基于对于数据底层、思考逻辑、商业意识培养,一个分析师的成长应该要在3年左右。

请用一句话概况数据分析师:他通过看数据,告诉你知道与不知道的信息,并告诉你如何用这些信息提升你的KPI。

如果你相信他,可以按他说的做。如果你不相信他,就是呵呵一下。

好的数据分析师,怎么能不拿高工资呢?对吧,通过上面的讨论,你看一个数据分析师,又要懂商业,又要懂业务,又森有产品思维,又要懂项目管理。更不要说做为数据分析师本身需要的一些专业知识,对工具的掌握。

本文转自d1net(转载)

时间: 2024-11-08 22:47:04

数据分析师常见的十个问题的相关文章

七周成为数据分析师—Excel实战篇

本文是<七周成为数据分析师>的第三篇教程,如果想要了解写作初衷,可以先行阅读七周指南.温馨提示:如果您已经熟悉Excel,大可不必再看这篇文章,或只挑选部分. 在Excel技巧和Excel函数后,今天这篇文章讲解实战,如何运用上两篇文章的知识进行分析.内容是新手向的基础教程.曾经有童鞋向我反应没有Excel数据练习,所以这次提供真实数据.为了更好的了解数据分析师这个岗位,我用爬虫爬取了招聘网站上约5000条的数据分析师职位数.拿数据分析师进行数据分析.数据真实来源于网络,属于网站方,请勿用于商

阅览5分钟 教你快速成为数据分析师

文章讲的是阅览5分钟 教你快速成为数据分析师,2016年可以说是大数据市场热火朝天的一年,无论是大型企业.中小型企业纷纷伸长了脖子想要和大数据这个互联网因素浓郁的技术挂钩.许多的企业也走在开始尝试用大数据技术进行转型的路上- 然而"大数据切实利用起来"还是需要落实落地,与几年前我们刚开始接触的Hadoop相比,数据分析变得更重要. 先来看2017大数据行业的五大趋势 物联网(IoT)和大数据是同一枚硬币的两面;数十亿与互联网连接的"物件"将生产大量数据;深度学习是一

数据分析师的必读书单

有不少人留言希望我推荐数据分析的书单,刚好即将春节,无论是假日学习还是年后,都值得充电.读书最好的时候是学生时期,其次是现在.内容按照 <如何七周成为数据分析师 > 的顺序. 数据分析是一门专业且跨越多个领域的学科,虽然我每篇公众号都足够篇幅(乃至我自己觉得啰嗦),可我还是得承认存在缺漏.如果有好书作为参考,对数据分析能力的成长更有帮助. 这份书单权作入门级推荐,如果大家有更好的欢迎留言说明.我不能保证全部看过,毕竟基础书没必要看几本,但我尽量做到客观.建议大家根据自己基础挑选,不要贪多. 大

如何成为一名优秀的数据分析师?

本文将从一个数据分析师的所需要的整体知识框架和能力入手,和大家分享一个优秀的数据分析师是怎样炼成的. 主要会讲数据分析师的演变.数据分析价值体系.数据分析师必备的四大能力.七大常用思路以及实战分析案例. 近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然. 过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高.运营效率的不断下降,这种粗放的经营模式已经不再可行.互联网企业迫切需要通过数据分析来实现精细化运营,降低成本.提高效率;而这对数据分析师也提出了更

七周成为数据分析师—Excel技巧篇

本文是<七周成为数据分析师>的第二篇教程,如果想要了解写作初衷,可以先行阅读七周指南.温馨提示:如果您已经熟悉Excel,大可不必再看这篇文章,或只挑选部分. 上一篇文章<七周成为数据分析师-Excel函数篇>教了大家函数,今天讲解Excel的技巧.本次讲解依然是提纲,图文部分引用自百度经验.如果有疑问或建议,可以留言给我,也可以网上搜索.内容方面照旧会补充SQL和Python. 快捷键 Excel的快捷键很多,以下主要是能提高效率. Ctrl+方向键,对单元格光标快速移动,移动到

数据分析师的基本素养——论如何成为一名数据科学家 Part 2

更多深度文章,请关注: https://yq.aliyun.com/cloud 本文为<数据分析师的基本素养--论如何成为一名数据科学家>文章的第二部分,第一部分请点击这里. Pronojit Saha,数据发烧友 数据科学入门的自学之路 对于那些想要入门数据科学的新手,这里有一份大纲,或许能够为大家提供一些思路.(其内容摘自我的一篇博客:如何获得"基本技能集"-自主学习的方式).我的建议是从下面每项建议中逐一挑选一到两个资料或链接,掌握其中介绍的内容. 基本的先决条件:

七周成为数据分析师!

这是一份七周的互联网数据分析能力养成提纲,入门到熟练的指南,并不包含数据挖掘等高阶内容.可也足够让产品和运营们获得进步. 我们会按照提纲针对性的增加互联网侧的内容,比如网站分析,用户行为序列等.我也不想留于表面,而是系统性讲述.比如什么是产品埋点?在获得埋点数据后,怎么利用Python / Pandas的shift ( )函数将其清洗为用户行为session,进而计算出用户在各页面的停留时间,后续如何转换成统计宽表,如何以此建立用户标签等. 第一周:Excel学习掌握 如果Excel玩的顺溜,你

掌握这五大技能,你也可以去应聘数据分析师

数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中.萃取和提炼出来,以找出所研究对象的内在规律.几年前, 数据分析还是一个比较鲜见的职业.而今天,无论各行各业,它无处不在的闪烁着耀人的光芒.那么做数据分析需要掌握哪些技能呢? SQL和数据仓库是最需要的数据分析技术中的两项. 数据和统计数据似乎现在是很热门的行业.有数百种编程语言,工具和实践方法可以练习. 但是哪种技能在就业市场中需求最高呢? Trilogy Education是纽约的一家初创公司,它与许多大学有伙伴关系. 该公司提供继

优秀数据分析师怎能不信仰数据?

对于数据分析的态度,有几句牢骚要发泄一下,纯属这几年工作的个人心里感受. 面试后的感想 这个周末我一直在面试,总共三十多人,只有一半能到我这一关,不管是工作了几年的,还是一点工作经验都没有的,不管是名牌大学的还是一般学校的,他们对数据的态度都让我有些失望. 我问他们,假如我是京东商城的CEO,周一早上你要给我看上周的三个数据,你会选择什么数据? 几乎所有的人没有1秒就回答,比如流量.转化率.交易量等. 我接着问,你听清楚我的问题了吗,我说是给CEO看的.接着大部分人会倒抽口气说,也许CEO不会关