智能分析:安防智能化的未来之路

智能分析可以看作是一个将数据转化为信息的模块。近两年,围绕深度学习技术,人脸视频结构化描述、车辆视频结构化描述等复合型智能分析算法开始在安防中应用,而且越来越成熟、广泛。

  智能分析在安防领域的应用

在安防领域中,数据的主要来源是监控视频,也有部分音频、雷达、激光等数据;需要提取的信息主要包括感兴趣目标、事件、统计特征等;智能分析技术负责建立从数据到信息的映射关系。由于数据主要由视频构成,所以智能分析技术中常用的算法也以计算机视觉领域的算法为主,如前背景建模、目标检测、分类、识别、跟踪、特征点提取、匹配、运动估计等等。

智能分析技术可以代替人力,从视频等数据中提取出客户感兴趣的信息。安防监控中,智能分析技术通过电子警察、人脸识别、人数统计、自动跟踪球机、主从跟踪球机、视频质量诊断服务器、智能视频浓缩、车辆二次分析等产品,应用在智能交通、安防、公安刑侦、电力、金融等十一个大行业。

随着软硬件技术的发展,智能分析技术早已不局限在安防领域,而是成为人工智能领域的关键技术。在智慧城市、智能家居、平安城市、物联网、虚拟现实、机器人等代表最新科学技术发展水平的领域中,智能分析技术都发挥着非常重要的作用。

在这样的形式下,安防企业迎来了巨大的机遇和挑战。一方面,安防企业对智能分析技术一直非常重视,也取得了很多成果,由于拥有海量的视频数据,在发展大数据、深度学习、云计算等技术时具有一定优势,可以凭借智能分析相关软硬件技术的积累,向其它领域扩展业务。另一方面,新的领域也将带来更多的投入和竞争,如何通过合理的规划来迎接这些挑战,是需要不断思考的问题。

前后端智能分析的关系

智能化作为现代安防发展的趋势之一,智能前置VS后端智能分析一直是行业备受争议的两个方向,两者的主要区别是:由于前端设备(主要是相机)内的空间有限,再加上功耗、成本等因素的限制,智能前置会受硬件计算资源限制,只能运行相对简单的、对实时性要求很高的算法;而后端智能分析(如智能分析服务器)通常可以根据需求配置足够强大的硬件资源,能够运行更复杂的、允许有一定延时的算法。

笔者认为这两者其实不是对立与竞争的关系,更多的是一种合作关系,合作的目标是为客户提供性价比更高的智能解决方案,具体过程是根据前端与后端的设计特征,将解决方案的执行过程予以分解,在满足智能需求的前提下,使资源利用得最充分。

从另外一个角度看,智能前置与后端智能分析包含着明显的转化关系,随着芯片技术的持续发展,已经有很多智能算法在前端实时运行了,如进入/离开区域、越界、徘徊、停车、人员聚集、快速移动、物品遗留、物品拿取、人脸检测等。在intel最新的movidius芯片中,计算能力大幅提高,一些基于神经网络的智能算法也将在前端完成,而这在前几年几乎是不可能实现的。

对于两者的未来,我认为在很长一段时间里两者仍会共同存在,相互配合地满足客户的需求。随着芯片技术的发展,会有越来越多的后端智能算法转变到前端运行,但同时也会有更复杂更高级的智能算法被研发出来,并依托于后端设备运行。

智能算法存在的问题

智能分析算法受实际场景影响较大。算法在设计的时候,需要对问题进行建模,这些模型是对场景的抽象和近似,由于实际场景非常复杂,单一的模型无法准确描述,就需要假设场景满足某些约束条件,如果这些条件与实际场景不符,算法的性能就会下降。现在,深度学习技术的研究有望缓解这一问题,该技术在训练模型参数的阶段使用了海量数据,相比传统机器学习方法,包含了足够多的场景,并且直接建立从数据到信息的映射,对约束条件的依赖较少。但是,短期来看,基于深度学习的算法仍然无法从根本上解决算法对实际场景的依赖。

智能分析算法在整个智能方案中的重要性需要转化为引导作用。在大部分智能化产品的设计过程中,已经认识到了智能分析算法的重要性,但是,留给算法使用的资源却很有限,如计算资源不足,目标在图像中的分辨率不够等问题,最终体现出来现象就是算法准确率、实时性等指标达到不预期。随着智能分析重要性的提升,尤其是客户对智能分析结果的要求越来越高,算法需要在整个方案中发挥一定的引导作用,在软硬件的设计过程中,将满足客户的智能需求作为共同的目标。

此外,某些智能分析算法的性能与安防行业的具体要求间也存在着一定差距,如算法准确性、实时性、鲁棒性、环境适应性等等,但这些指标的提升是长期的,需要相关领域的人才一起努力来完成。

智能分析与人工智能

作为强化智能分析的手段,人工智能在近一年表现抢眼,已经有很多安防企业开始投入资源开发基于深度学习技术的算法、产品,深度学习和大数据为智能视频分析技术的发展带来两大方面的提升。

首先,提升了智能视频分析中很多机器学习算法的准确性,例如,在国际权威人脸识别公开测试平台LFW(Labeled Faces in the Wild)上,排行前列的算法精度都已经超过了人类的识别精度。其它如车系识别、人数统计等算法中,深度学习算法的表现也远远超过了传统的机器学习算法。

其次,深度学习和大数据技术直接建立了从数据到目标模型的映射,不再需要人工选择或创建特征集来描述目标。这种特点一定程度上降低了机器学习领域的门槛,也帮助一些以前很难人工建模的问题得以解决,促进了相关技术应用的发展。但同时,深度学习的训练过程需要海量数据,需要计算能力足够强大的硬件,深度学习算法本身的升级则需要更专业的人才能完成,这些因素也带来了新的挑战。

智能分析技术将以解决方案的形式获得更快速、更广泛的发展。在很多人的印象中,智能分析技术可能是一个算法上的概念,但如果传感器提供的数据、用于计算的芯片性能都不理想,那么只靠算法,对最终结果的提升作用是有限的。所以,现在很多智能解决方案中都包含了更丰富的传感器与更强大的处理芯片,一方面,智能分析算法需要硬件方案提供输入的全景视频信息;另一方面,多目拼接相机中的实时拼接算法、与球机进行联动时的高精度标定算法等,也是硬件方案中的关键部分。同样,芯片技术也是智能解决方案中不可或缺的。

过去几年,安防龙头企业成功地从产品营销升级为解决方案营销,随着算法、芯片、多维传感等技术的不断发展,必将推动智能解决方案快速发展。

(本文作者现任浙江大华技术股份有限公司先进技术研究院预研部 高级智能算法工程师

本文转自d1net(转载)

时间: 2024-10-25 10:13:20

智能分析:安防智能化的未来之路的相关文章

智能分析是安防智能化的未来之路

智能分析可以看作是一个将数据转化为信息的模块.近两年,围绕深度学习技术,人脸视频结构化描述.车辆视频结构化描述等复合型智能分析算法开始在安防中应用,而且越来越成熟.广泛. 智能分析在安防领域的应用 在安防领域中,数据的主要来源是监控视频,也有部分音频.雷达.激光等数据:需要提取的信息主要包括感兴趣目标.事件.统计特征等:智能分析技术负责建立从数据到信息的映射关系.由于数据主要由视频构成,所以智能分析技术中常用的算法也以计算机视觉领域的算法为主,如前背景建模.目标检测.分类.识别.跟踪.特征点提取

安防智能化不足 英特尔从“芯”助力

在移动互联网迅猛发展的今天,现代智慧城市建设已经离不开互联网和大数据.专家表示,助力城市建设,安防行业也要加速行业转型,进一步拥抱互联网技术. 近年来,在国家政策的支持下,安防产业飞速发展.而得益于智慧城市建设的逐步推进,安防产业始终保持高增长态势稳步发展.回顾我国安防行业发展历程,我国真正意义上的安防产业兴起于20世纪80年代,历经30余年的积淀,目前已取得了长足的进步. 安防行业竞争激烈 当下,安防行业竞争激烈.根据中安网数据,2015年我国安防行业总产值达到4860亿元,安防产业在国内生产

视频结构化,支撑安防技术新未来

从大数据和云技术相继在安防行业大展拳脚之际,视频结构化技术被得以重视,成为安防巨头企业争相展示的技术类别. 视频结构化迎来了应用的春天 其实视频结构化技术作为行业一个技术研究方向,早在2009年由公安部三所提出,作为官办的检测机构由于市面上并未出现涵盖此技术的送检产品,因而被搁置.直到大数据和云技术在安防行业的应用,让以视频结构化技术成为代表新一代视频监控的关键技术,也是产业技术创新发展的一个突破口.当然,目前其最主流应用集中在公安行业,因为在业务实践中,他们遇到了一些困难和问题: 缺少视频信息

痛点催生变革 安防智能化脚步加快

"安防+"与传统的公安.金融.交通.城市建筑.零售.能源等各个行业结合起来,协同增效,创造新的价值与新的安防发展生态.2017年,新的一轮安防竞争开始,无论是传统安防企业还是新兴安防企业,都在寻找最佳契机,尤其在全球市场的布局上,企业也逐渐打开国际眼光,在产品方案技术方面也获得国内外市场的认可.国际客户培训,全球性高清标准的加入,美西展上引领安防高清新时代,让国际市场更多领略中国安防企业的风采. 但是我们发现,在推进新型技术与现有的传统安防体系结合的过程中遇到了诸多困难,民用安防厂商鱼

开枪走火!黑客轻而易举绕过Armatix智能手枪安防系统

本文讲的是开枪走火!黑客轻而易举绕过Armatix智能手枪安防系统,近日,黑客"Plore"通过在线演示视频向人们证明,攻击者有能力绕过德国制造商Armatix为其IP1智能枪支设置的安全防御系统.视频中,黑客仅通过使用廉价的.现成的设备就成功对智能对象实施了攻击,完成了破解过程. 而此次破解事件的主角就是下面这款Armatix IP1型号的智能枪.   关于Armatix IP1智能枪 "智能枪"的概念起源于1995年国家司法研讨所的一项研讨,该研讨主张要根据技能

两会互联网金融:安防等领域未来产品业绩值得期待

两会互联网金融:安防等领域未来产品业绩值得期待.在李克强总理的政府工作报告中,提到要"当前系统性风险总体可控,但对不良资产.债券违约.影子银行.互联网金融等累积风险要高度警惕."自去年两会提出要规范发展互联网金融,一系列的监管细则逐一落地,整改清查行动也在稳步进行.但前期积累的泡沫及风险还未完全消化,随着整改行动的继续进行,行业洗牌也将持续,整改行动的彻底完成才能使得互金行业真正消化累计风险.进入规范健康发展. 同时,两会政府工作报告首次提出人工智能:"全面实施战略性新兴产业

打造智能家居安防系统 七个选购常识你需懂

公安部统计,每年因入室盗窃造成的家庭损失高达11300亿元,特别是随着拆围墙.建开放型社区政策执行之后,社区盗窃偷盗机率将会暴增,城市家庭安防的需求会更加旺盛.近年来,住宅智能家居安防系统,已成为开发商销售楼盘的主打卖点之一. 智能家居安防系统包安防报警.消防.监测三种. 安防报警 智能家居安防系统,非比普通安防.用户在平常在家休息,或者出差旅行,智能家居系统会自动开启"离家模式"OR"睡眠模式",对住宅进行针对性的布防,在小偷进入布防内,警报响起,将闯入者照片拍下

以监控为核心 实现安防智能化全面兼容

随着视频监控技术的快速发展,高清监控取代标清监控.具备分析能力的智能网络视频监控取代功能单一的模拟视频监控,已经成为不可逆转的趋势.市场调研机构IHS的分析报告显示,2014年,网络摄像头的出货量第一次超过了模拟摄像头:预计到2018年,网络摄像头的出货量将超过7400万,市场规模逾100亿美元,中国市场增长最为迅猛. 在安防监控市场,以前模拟摄像机占据市场的主流地位,现在有越来越多的IP摄像机出现,它们的连接性会越来越强,智能性也会越来越高,包括智能的网关.后端的设备和后台.现在有很多高清网络

传感器在安防智能化发展中的重大作用

物联网把所有物品通过射频识别.红外感应器等信息传感设备与互联网连接起来, 以实现智能化识别和管理,是继计算机.互联网和移动通信网之后的又一次信息产业革命,其中传感器技术是物联网的关键技术之一. 在智慧井盖中,采用行程开关或倾角传感器的井盖被偷后,系统会马上发出报警信息,管理人员只需打开手机,就能在电子地图上实时查看井盖的具体位置与异常状态,第一时间安排工程人员查看.维修. 物联网把所有物品通过射频识别.红外感应器等信息传感设备与互联网连接起来, 以实现智能化识别和管理,是继计算机.互联网和移动通