python进阶教程之动态类型详解_python

动态类型(dynamic typing)是Python另一个重要的核心概念。我们之前说过,Python的变量(variable)不需要声明,而在赋值时,变量可以重新赋值为任意值。这些都与动态类型的概念相关。

动态类型

在我们接触的对象中,有一类特殊的对象,是用于存储数据的。常见的该类对象包括各种数字,字符串,表,词典。在C语言中,我们称这样一些数据结构为变量。而在Python中,这些是对象。

对象是储存在内存中的实体。但我们并不能直接接触到该对象。我们在程序中写的对象名,只是指向这一对象的引用(reference)。

引用和对象分离,是动态类型的核心。引用可以随时指向一个新的对象:

复制代码 代码如下:

a = 3
a = 'at'

第一个语句中,3是储存在内存中的一个整数对象。通过赋值,引用a指向对象3。

第二个语句中,内存中建立对象‘at',是一个字符串(string)。引用a指向了'at'。此时,对象3不再有引用指向它。Python会自动将没有引用指向的对象销毁(destruct),释放相应内存。

(对于小的整数和短字符串,Python会缓存这些对象,而不是频繁的建立和销毁。)

复制代码 代码如下:

a = 5
b = a
a = a + 2

再看这个例子。通过前两个句子,我们让a,b指向同一个整数对象5(b = a的含义是让引用b指向引用a所指的那一个对象)。但第三个句子实际上对引用a重新赋值,让a指向一个新的对象7。此时a,b分别指向不同的对象。我们看到,即使是多个引用指向同一个对象,如果一个引用值发生变化,那么实际上是让这个引用指向一个新的引用,并不影响其他的引用的指向。从效果上看,就是各个引用各自独立,互不影响。

其它数据对象也是如此:

复制代码 代码如下:

L1 = [1,2,3]
L2 = L1
L1 = 1

但注意以下情况

复制代码 代码如下:

L1 = [1,2,3]
L2 = L1
L1[0] = 10
print L2

在该情况下,我们不再对L1这一引用赋值,而是对L1所指向的表的元素赋值。结果是,L2也同时发生变化。

原因何在呢?因为L1,L2的指向没有发生变化,依然指向那个表。表实际上是包含了多个引用的对象(每个引用是一个元素,比如L1[0],L1[1]..., 每个引用指向一个对象,比如1,2,3), 。而L1[0] = 10这一赋值操作,并不是改变L1的指向,而是对L1[0], 也就是表对象的一部份(一个元素),进行操作,所以所有指向该对象的引用都受到影响。

(与之形成对比的是,我们之前的赋值操作都没有对对象自身发生作用,只是改变引用指向。)

列表可以通过引用其元素,改变对象自身(in-place change)。这种对象类型,称为可变数据对象(mutable object),词典也是这样的数据类型。

而像之前的数字和字符串,不能改变对象本身,只能改变引用的指向,称为不可变数据对象(immutable object)。

我们之前学的元组(tuple),尽管可以调用引用元素,但不可以赋值,因此不能改变对象自身,所以也算是immutable object.

从动态类型看函数的参数传递

函数的参数传递,本质上传递的是引用。比如说:

复制代码 代码如下:

def f(x):
    x = 100
    print x

a = 1
f(a)
print a

参数x是一个新的引用,指向a所指的对象。如果参数是不可变(immutable)的对象,a和x引用之间相互独立。对参数x的操作不会影响引用a。这样的传递类似于C语言中的值传递。

如果传递的是可变(mutable)的对象,那么改变函数参数,有可能改变原对象。所有指向原对象的引用都会受影响,编程的时候要对此问题留心。比如说:

复制代码 代码如下:

def f(x):
    x[0] = 100
    print x

a = [1,2,3]
f(a)
print a

动态类型是Python的核心机制之一。可以在应用中慢慢熟悉。

总结

引用和对象的分离,对象是内存中储存数据的实体,引用指向对象。

可变对象,不可变对象

函数值传递

时间: 2024-09-20 07:10:52

python进阶教程之动态类型详解_python的相关文章

python基础教程之字典操作详解_python

字典dictionary 1.键值对的集合(map) 2.字典是以大括号"{}"包围的数据集合 3.字典是无序的,在字典中通过键来访问成员. 可变的,可嵌套,可以原处修改扩展等,不产生新的字典 4.字典的键,可以是字符串(大小写敏感),数字常量或元组(不可变类型),同一个字典的键可以混用类型.字典的键必须是可哈希的 元组作为键的条件是,元组内的值都是不可变类型 复制代码 代码如下: a = (1,2)  #可以作为键b = (1,2,[3,4])  #不可以 5.字典的值可以是任意类型

Python中的变量和作用域详解_python

作用域介绍 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量: E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的: G:globa,全局变量,就是模块级别定义的变量: B:built-in,系统固定模块里面的变量,比如int, bytearray等. 搜索变量的优先级顺序依次是:作用域局部>外层作用域>当前模块中的全局>python内置作用域,也就是LEGB. x = int(2.9) # int bu

python变量不能以数字打头详解_python

在编写python函数时,无意中发现一个问题:python中的变量不能以数字打头,以下函数中定义了一个变量3_num_varchar,执行时报错. 函数如下: def database_feild_varchar_trans(in_feild): ''' transfer the feild if varchar then 3times lang else no transfer ''' feild_split = in_feild.split(' ') is_varchar = feild_s

Python中运算符"=="和"is"的详解_python

前言 在讲is和==这两种运算符区别之前,首先要知道Python中对象包含的三个基本要素,分别是:id(身份标识).python type()(数据类型)和value(值).is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同.下面来看看具体区别在哪. Python中比较两个对象是否相等,一共有两种方法,简单来说,它们的区别如下:      is是比较两个引用是否指向了同一个对象(引用比较).      ==是比较两个对象是否相等. >>> a = [1, 2, 3]

Python基础之函数用法实例详解_python

本文以实例形式较为详细的讲述了Python函数的用法,对于初学Python的朋友有不错的借鉴价值.分享给大家供大家参考之用.具体分析如下: 通常来说,Python的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后才存在. 函数是通过赋值传递的,参数通过赋值传递给函数 def语句将创建一个函数对象并将其赋值给一个变量名,def语句的一般格式如下: def <name>(arg1,arg2,arg3,--,argN): <stateme

python异常和文件处理机制详解_python

本文实例讲述了python异常和文件处理机制.分享给大家供大家参考,具体如下: 1 异常处理 Python的异常用 try except finally 来处理. 并且except后还可以跟 else . 引发异常用 raise 如果抛出的异常没有被处理. 在Python IDE中是显示一些红色的信息. 在真正的Python程序运行时. 会导致程序终止. 在以前我们已经见到过一下几种异常: 在 Dictionary 中如果使用的 key 不存在. 会引发 KeyError 异常. 如: >>&

Python中的Classes和Metaclasses详解_python

类和对象 类和函数一样都是Python中的对象.当一个类定义完成之后,Python将创建一个"类对象"并将其赋值给一个同名变量.类是type类型的对象(是不是有点拗口?). 类对象是可调用的(callable,实现了 __call__方法),并且调用它能够创建类的对象.你可以将类当做其他对象那么处理.例如,你能够给它们的属性赋值,你能够将它们赋值给一个变量,你可以在任何可调用对象能够用的地方使用它们,比如在一个map中.事实上当你在使用map(str, [1,2,3])的时候,是将一个

python中的sort方法使用详解_python

Python中的sort()方法用于数组排序,本文以实例形式对此加以详细说明: 一.基本形式列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的. x = [4, 6, 2, 1, 7, 9] x.sort() print x # [1, 2, 4, 6, 7, 9] 如果需要一个排序好的副本,同时保持原有列表不变,怎么实现呢 x =[4, 6, 2, 1, 7, 9] y = x[ : ] y.sort() print y #[1,

Python文本相似性计算之编辑距离详解_python

编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 例如将kitten一字转成sitting:('kitten' 和 'sitting' 的编辑距离为3)      sitten (k→s)      sittin (e→i)      sitting (→g) Python中的Levenshte