[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答的相关文章

[家里蹲大学数学杂志]第265期武汉大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[家里蹲大学数学杂志]第266期中南大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录

[家里蹲大学数学杂志]第034期中山大学2008年数学分析考研试题参考解答

1  (每小题6分,共48分)  (1) 求$\lim\limits_{x \to 0+}x^x;$ 解答:  $$\begin{eqnarray*}\textrm{ 原式} & = & \lim\limits_{x \to 0+}e^{x\ln x} = \lim\limits_{x \to 0+}e^{\cfrac{\ln x}{1/x}} = e^{\lim\limits_{x \to 0+}\cfrac{\ln x}{1/x}}\stackrel{L'Hospital}{=} e^

[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题

注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.& \vGa_{ij}^k=\frac{1}{2}\sum g^{kl}\sex{\frac{\p g_{il}}{\p u^j} +\frac{\p g_{jl}}{\p u^i}-\frac{\p g_{ij}}{\p u^l}}.\\ 2.& \

[家里蹲大学数学杂志]第256期第五届[2013年]全国大学生数学竞赛[非数学类]试题

1($4\times 6'=24'$) 解答下列各题. (1)求极限 $\dps{\ls{n}\sez{1+\sin\pi\sqrt{1+4n^2}}^n}$. (2)证明广义积分 $\dps{\int_0^\infty\frac{\sin x}{x}\rd x}$ 不是绝对收敛的. (3)设函数 $y=y(x)$ 由 $x^3+3x^2y-2y^3=2$ 所确定, 求 $y(x)$ 的极值. (4)过函数 $y=\sqrt[3]{x}\ (x\geq 0)$ 上的点 $A$ 作切线, 使该切线

[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答

    1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ. \eex$$ 则 $A\cap [n,n+1)$ 也可数. 据 $$\bex A=\cup_{n=-\infty}^\infty (A\cap [n,n+1)) \eex$$ 即知 $A$ 可数, 这是一个矛盾. 故有结

[家里蹲大学数学杂志]第254期第五届[2013年]全国大学生数学竞赛[数学类]试题

1 ($15'$) 平面 $\bbR^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点, 将圆 $C_2$ 沿 $C_1$ 的圆周 (无滑动) 滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动. 记 $\vGa$ 为 $P$ 点的运动轨迹曲线, 称为心脏线. 现设 $C$ 为以 $P$ 的初始位置 (切点) 为圆心的圆, 其半径为 $R$, 记 $$\bex \gamma:\ \bbR^2\cup\sed{\infty}\to \bb

[家里蹲大学数学杂志]第037期泛函分析期末试题

1 (10 分) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X})$ 的充分必要条件是 \[ N(f)=\{ x\in \mathcal{X};\ f(x)=0 \} \] 是 $\mathcal{X}$ 的闭线性子空间. 证明:  参见书 P 82 T 2.1.7(3).   2 (10 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $l$

[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答

    1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}}+1, \eex$$ 则当 $n\geq N$ 时, $$\bex \sev{\frac{2015\cdot 2^n+20\sin n}{n!}} \leq \frac{2015\cdot 2\cdots