在OpenCV中,能够很方便的求轮廓包围盒。包括矩形,圆形,椭圆形以及倾斜的矩形(包围面积最小)集中包围盒。用到的四个函数是:
Rect boundingRect(InputArray points)
void minEnclosingCircle(InputArray points, Point2f& center, float& radius)
RotatedRect minAreaRect(InputArray points)
RotatedRect fitEllipse(InputArray points)
输入的参数都是轮廓,下面是程序代码:
1. Rect和原型包围盒代码:
nt main( int argc, char** argv ) {//装入图像 src = imread("../ballon.jpg", 1 ); //转化为灰度图并进行blur操作 cvtColor( src, src_gray, CV_BGR2GRAY ); blur( src_gray, src_gray, Size(3,3) ); namedWindow( "source", CV_WINDOW_AUTOSIZE ); imshow( "source", src ); Mat threshold_output; vector<vector<Point> > contours; vector<Vec4i> hierarchy; //得到二值图像 threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );//查找轮廓 findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) ); //对轮廓进行多边形近似处理求得圆形和四边形包围盒 vector<vector<Point> > contours_poly( contours.size() ); vector<Rect> boundRect( contours.size() ); vector<Point2f>center( contours.size() ); vector<float>radius( contours.size() ); //得到每个轮廓的包围盒RECT以及园,园用中心和半径表示for( int i = 0; i < contours.size(); i++ ) { approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true ); boundRect[i] = boundingRect( Mat(contours_poly[i]) ); minEnclosingCircle( (Mat)contours_poly[i], center[i], radius[i] ); } //画轮廓以及它的四边形和原型包围盒 Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );for( int i = 0; i< contours.size(); i++ ) { Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) ); drawContours( drawing, contours_poly, i, color, 1, 8, vector<Vec4i>(), 0, Point() );//tl是左上角坐标, br是右下角坐标 rectangle( drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0 ); circle( drawing, center[i], (int)radius[i], color, 2, 8, 0 ); } namedWindow( "Contours", CV_WINDOW_AUTOSIZE ); imshow( "Contours", drawing ); while(1) waitKey(0);return(0); }
程序运行效果:
2. 椭圆形和倾斜的矩形包围盒代码:
int main( int argc, char** argv ) {//装入图像 src = imread("../ballon.jpg", 1 ); //转化为灰度图并进行blur操作 cvtColor( src, src_gray, CV_BGR2GRAY ); blur( src_gray, src_gray, Size(3,3) ); namedWindow( "source", CV_WINDOW_AUTOSIZE ); imshow( "source", src ); Mat threshold_output; vector<vector<Point> > contours; vector<Vec4i> hierarchy; //得到二值图像 threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );//查找轮廓 findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) ); //查找轮廓的最小旋转rect和椭圆包围盒 vector<RotatedRect> minRect( contours.size() ); vector<RotatedRect> minEllipse( contours.size() ); for( int i = 0; i < contours.size(); i++ ) { minRect[i] = minAreaRect( Mat(contours[i]) );if( contours[i].size() > 5 ) { minEllipse[i] = fitEllipse( Mat(contours[i]) ); } } //画轮廓和包围盒 Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );for( int i = 0; i< contours.size(); i++ ) { Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );// 轮廓 drawContours( drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point() );// 椭圆 ellipse( drawing, minEllipse[i], color, 2, 8 );// 旋转rect Point2f rect_points[4]; minRect[i].points( rect_points );for( int j = 0; j < 4; j++ ) line( drawing, rect_points[j], rect_points[(j+1)%4], color, 1, 8 ); } namedWindow( "Contours", CV_WINDOW_AUTOSIZE ); imshow( "Contours", drawing ); while(1) waitKey(0);return(0); }
程序运行效果:
时间: 2024-09-29 16:14:49