(转)Monte Carlo method 蒙特卡洛方法

转载自:维基百科  蒙特卡洛方法

https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95

 

蒙特卡洛方法[编辑]

维基百科,自由的百科全书

 

 

蒙特卡洛方法(英语:Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

20世纪40年代,在冯·诺伊曼斯塔尼斯拉夫·乌拉姆尼古拉斯·梅特罗波利斯洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡洛方法。因为乌拉姆的叔叔经常在蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。

与它对应的是确定性算法

蒙特卡洛方法在金融工程学宏观经济学生物医学计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。[1]

 

目录

  [隐藏

 

蒙特卡洛方法的基本思想[编辑]

通常蒙特卡洛方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。例如在核物理研究中,分析中子在反应堆中的传输过程。中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向。科学家依据其概率进行随机抽样得到裂变位置、速度和方向,这样模拟大量中子的行为后,经过统计就能获得中子传输的范围,作为反应堆设计的依据。

另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量期望值。通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样数字特征估算随机变量数字特征,并将其作为问题的解。这种方法多用于求解复杂的多维积分问题。

假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡洛方法基于这样的思想:假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。借助计算机程序可以生成大量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的比例和坐标点生成范围的面积就可以求出图形面积。

蒙特卡洛方法的工作过程[编辑]

 
使用蒙特卡洛方法估算π值. 放置30000个随机点后,π的估算值与真实值相差0.07%.

在解决实际问题的时候应用蒙特卡洛方法主要有两部分工作:

  1. 用蒙特卡洛方法模拟某一过程时,需要产生各种概率分布随机变量
  2. 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。

蒙特卡洛方法分子模拟计算的步骤[编辑]

使用蒙特卡洛方法进行分子模拟计算是按照以下步骤进行的:

  1. 使用随机数生成器产生一个随机的分子构型
  2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
  3. 计算新的分子构型的能量。
  4. 比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
    • 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代
    • 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个随机数。
      • 若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。
      • 若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
  5. 如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结丛。

蒙特卡洛方法在数学中的应用[编辑]

通常蒙特卡洛方法通过构造匹配一定规则的随机数来解决数学上的各种问题。对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡洛方法是一种有效的求出数值解的方法。一般蒙特卡洛方法在数学中最常见的应用就是蒙特卡洛积分。下面是蒙特卡罗方法的两个简单应用:

积分[编辑]

非权重蒙特卡洛积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。此种方法的正确性是基于概率论中心极限定理。当抽样点数为m时,使用此种方法所得近似解的统计误差只与m有关(与正相关),不随积分维数的改变而改变。因此当积分维度较高时,蒙特卡洛方法相对于其他数值解法更优。

圆周率[编辑]

蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:4,PI为圆周率),当随机点获取越多时,其结果越接近于圆周率(然而准确度仍有争议:即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)。用蒙特卡洛方法近似计算圆周率的先天不足是:第一,计算机产生的随机数是受到存储格式的限制的,是离散的,并不能产生连续的任意实数;上述做法将平面分区成一个个网格,在空间也不是连续的,由此计算出来的面积当然与圆或多或少有差距。

参考文献[编辑]

  1. ^ Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I. Why the Monte Carlo method is so important today. WIREs Comput Stat. 2014,6: 386–392. doi:10.1002/wics.1314.

 

时间: 2024-10-04 05:06:22

(转)Monte Carlo method 蒙特卡洛方法的相关文章

(转)Markov Chain Monte Carlo

Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn't have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th

一份数学小白也能读懂的「马尔可夫链蒙特卡洛方法」入门指南

在我们中的很多人看来,贝叶斯统计学家不是巫术师,就是完全主观的胡说八道者.在贝叶斯经典方法中,马尔可夫链蒙特卡洛(Markov chain Monte Carlo/MCMC)尤其神秘,其中数学很多,计算量很大,但其背后原理与数据科学有诸多相似之处,并可阐释清楚,使得毫无数学基础的人搞明白 MCMC.这正是本文的目标. 那么,到底什么是 MCMC 方法?一言以蔽之: MCMC 通过在概率空间中随机采样以近似兴趣参数(parameter of interest)的后验分布. 我将在本文中做出简短明了

c++ monte carlo 字符串匹配算法,

问题描述 c++ monte carlo 字符串匹配算法, monte carlo 字符串匹配 求代码,求注释啊.谢谢好心人

const-用蒙特卡洛方法求解圆周率

问题描述 用蒙特卡洛方法求解圆周率 //蒙特卡洛法求圆周率 #include #include #include #include using namespace std; double FindPi(const long n) { srand(time(NULL)); long sum = 0; double x = 0.0, y = 0.0; for (long i = 0; i < n; i++) { x = (double)(rand())/(double)RAND_MAX; y = (

Tonatiuh 1.2.2发布 光学模拟Monte Carlo光线追踪

Tonatiuh项目旨在创建一个准确和易于使用的太阳能聚光系统的光学模拟Monte Carlo光线追踪.一些设计目标是方便几乎任何类型的太阳能集中系统的光学模拟,展示一个干净和灵活的软件架构,http://www.aliyun.com/zixun/aggregation/18736.html">允许用户去改编,扩展,增加和修改其功能,实现操作系统的独立,并用利用建立的其他国家最先进的开放源码库和工具. Tonatiuh 1.2.2这是一个小的发行版.它解决了一系列小的错误和几个主要的错误,

蒙特卡洛算法

从今天开始要研究Sampling Methods,主要是MCMC算法.本文是开篇文章,先来了解蒙特卡洛算法.  文章转载自:http://blog.csdn.net/acdreamers/article/details/44978591   Contents      1. 蒙特卡洛介绍    2. 蒙特卡洛的应用    3. 蒙特卡洛积分       1. 蒙特卡洛介绍      蒙特卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的   

蒙特卡罗方法入门

本文通过五个例子,介绍蒙特卡罗方法(Monte Carlo Method). 一.概述 蒙特卡罗方法是一种计算方法.原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值. 它非常强大和灵活,又相当简单易懂,很容易实现.对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法. 它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率. 二.π的计算 第一个例子是,如何用蒙特卡罗方法计算圆周率π. 正方形内部有一个相切的圆,它们的面积之比是π/4

数学建模十大算法

作者:July  二零一一年一月二十九日   一.蒙特卡罗算法1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis 共同发明了,蒙特卡罗方法. 此算法被评为20世纪最伟大的十大算法之一,详情,请参见我的博文:http://blog.csdn.net/v_JULY_v/archive/2011/01/10/6127953.aspx   蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法

细数二十世纪最伟大的十大算法

发明十大算法的其中几位算法大师 ◆ ◆ ◆ 一.1946 蒙特卡洛方法 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neuman