这节,我们继续上,中(以前的日志有)篇目进行分析,结合一个真实的驱动案例来描述linux内核中驱动的中断机制,首先我们先了解一下linux内核中提供的中断接口。
这个接口我们需要包含一个头文件:#include <linux/interrupt.h>
在中断接口中,最重要的是以下的接口函数:
1、这个是请求中断函数
int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) irq: 中断号 arch/arm/plat-s3c64xx/include/plat/irqs.h handler: 中断处理函数 irqreturn_t handler(int irq, void *dev_id); irqreturn_t: See include/linux/irqreturn.h irqflags: See line 21-59 in include/linux/interrupt.h 使用IRQF_SHARED共享irq时, irqflags必须相同 如: request_irq(IRQ_EINT(0), handler1, IRQF_TRIGGER_FALLING | IRQF_SHARED, "dev1", &dev1); request_irq(IRQ_EINT(0), handler2, IRQF_TRIGGER_FALLING | IRQF_SHARED, "dev2", &dev2); devname: 设备名, cat /proc/interrupts dev_id: 发生中断时将dev_id传递给handler函数, irqflags含有IRQF_SHARED时dev_id不能为NULL, 并且要保证唯一 dev_id一般采用当前设备的结构体指针
2、释放中断
void free_irq ( unsigned int irq, void * dev_id); 释放匹配irq和dev_id的中断, 如果irq有多个相同的dev_id, 将释放第一个 So, 共享中断的dev_id不是唯一时, 可能会释放到其它设备的中断
3、开启中断
void enable_irq(unsigned int irq); 开启irq号中断
4、关闭中断
void disable_irq(unsigned int irq); 关闭irq号中断
5、关闭当前CPU中断并保存在flag中去
void local_irq_save(unsigned long flags);
6、恢复flag到CPU中去
void local_irq_restore(unsigned long flags); 恢复flags到当前CPU
7、关闭当前的CPU中断
void local_irq_disable(void);
8、开始当前的CPU中断
void local_irq_enable(void);
接下来我们来看一个按键中断的例子,这个例子是基于Tiny4412按键驱动的源码:
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/poll.h> #include <linux/sched.h> #include <linux/irq.h> #include <asm/irq.h> #include <asm/io.h> #include <linux/interrupt.h> #include <asm/uaccess.h> #include <mach/hardware.h> #include <linux/platform_device.h> #include <linux/cdev.h> #include <linux/miscdevice.h> #include <linux/gpio.h> #include <mach/map.h> #include <mach/gpio.h> #include <mach/regs-clock.h> #include <mach/regs-gpio.h> //设备名称 #define DEVICE_NAME "buttons" struct button_desc { int gpio; int number; char *name; struct timer_list timer; }; //定义按键相关的寄存器 static struct button_desc buttons[] = { { EXYNOS4_GPX3(2), 0, "KEY0" }, { EXYNOS4_GPX3(3), 1, "KEY1" }, { EXYNOS4_GPX3(4), 2, "KEY2" }, { EXYNOS4_GPX3(5), 3, "KEY3" }, }; //存储按键的键值 static volatile char key_values[] = { '0', '0', '0', '0', '0', '0', '0', '0' }; //创建一个等待队列头并初始化 static DECLARE_WAIT_QUEUE_HEAD(button_waitq); static volatile int ev_press = 0; //按键定时器 static void tiny4412_buttons_timer(unsigned long _data) { struct button_desc *bdata = (struct button_desc *)_data; int down; int number; unsigned tmp; //获取按键的值 tmp = gpio_get_value(bdata->gpio); //判断是否为低电平 down = !tmp; printk(KERN_DEBUG "KEY %d: %08x\n", bdata->number, down); number = bdata->number; //如果此时不为低电平,中断处理进入休眠状态,一般有事件产生就会立即被唤醒 if (down != (key_values[number] & 1)) { key_values[number] = '0' + down; ev_press = 1; //中断休眠 wake_up_interruptible(&button_waitq); } } //按键中断处理函数 //irq:中断号 //dev_id:设备ID号 static irqreturn_t button_interrupt(int irq, void *dev_id) { struct button_desc *bdata = (struct button_desc *)dev_id; //注册一个定时器 mod_timer(&bdata->timer, jiffies + msecs_to_jiffies(40)); //返回一个中断句柄 return IRQ_HANDLED; } //按键打开函数 //inode : 节点 //file : 打开文件的形式 static int tiny4412_buttons_open(struct inode *inode, struct file *file) { int irq; int i; int err = 0; //循环遍历四个IO口,看看有哪个按键被按下了 for (i = 0; i < ARRAY_SIZE(buttons); i++) { if (!buttons[i].gpio) continue; //初始化定时器 setup_timer(&buttons[i].timer, tiny4412_buttons_timer, (unsigned long)&buttons[i]); //设置GPIO为中断引脚,也就是对应那四个按键 irq = gpio_to_irq(buttons[i].gpio); err = request_irq(irq, button_interrupt, IRQ_TYPE_EDGE_BOTH, //请求中断处理函数 buttons[i].name, (void *)&buttons[i]); if (err) break; } if (err) { i--; for (; i >= 0; i--) { if (!buttons[i].gpio) continue; irq = gpio_to_irq(buttons[i].gpio); disable_irq(irq); //关中断 free_irq(irq, (void *)&buttons[i]);//释放中断 del_timer_sync(&buttons[i].timer);//删除一个定时器 } return -EBUSY; } ev_press = 1; return 0; } //按键关闭处理函数 static int tiny4412_buttons_close(struct inode *inode, struct file *file) { int irq, i; for (i = 0; i < ARRAY_SIZE(buttons); i++) { if (!buttons[i].gpio) continue; //同样的,这里也是释放 irq = gpio_to_irq(buttons[i].gpio); free_irq(irq, (void *)&buttons[i]); <span style="white-space:pre"> </span>//删除一个定时器 del_timer_sync(&buttons[i].timer); } return 0; } //读取按键的键值函数 static int tiny4412_buttons_read(struct file *filp, char __user *buff, size_t count, loff_t *offp) { unsigned long err; if (!ev_press) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; else //等待中断的事件产生 wait_event_interruptible(button_waitq, ev_press); } ev_press = 0; //将获取到的键值返回到用户空间 err = copy_to_user((void *)buff, (const void *)(&key_values), min(sizeof(key_values), count)); return err ? -EFAULT : min(sizeof(key_values), count); } //按键非阻塞型接口设计 static unsigned int tiny4412_buttons_poll( struct file *file, struct poll_table_struct *wait) { unsigned int mask = 0; <span style="white-space:pre"> </span>//非阻塞型等待 poll_wait(file, &button_waitq, wait); if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } //驱动文件操作结构体成员初始化 static struct file_operations dev_fops = { .owner = THIS_MODULE, .open = tiny4412_buttons_open, .release = tiny4412_buttons_close, .read = tiny4412_buttons_read, .poll = tiny4412_buttons_poll, }; //注册杂类设备的结构体成员初始化 static struct miscdevice misc = { .minor = MISC_DYNAMIC_MINOR, .name = DEVICE_NAME, .fops = &dev_fops, //这里就是把上面那个文件操作结构体的成员注册到杂类操作这里 }; //按键驱动初始化 static int __init button_dev_init(void) { int ret; //先注册一个杂类设备 //这相当于让misc去管理open ,read,write,close这些接口 ret = misc_register(&misc); // printk(DEVICE_NAME"\tinitialized\n"); return ret; } //按键驱动注销 static void __exit button_dev_exit(void) { //注销一个杂类设备驱动 misc_deregister(&misc); } module_init(button_dev_init); module_exit(button_dev_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Yang.yuanxin");
运行结果:
时间: 2024-10-30 22:27:55