8.5 分析认证有意义吗,还是干扰视听的噪音
驾驭大数据
近来关于开发分析专家认证项目的讨论多了起来。这类认证从概念上讲和注册会计师认证(CPA)以及理财规划师认证(CFP)没有什么不同。分析专家这种职业有必要发起认证项目,好让用人单位可以评估哪些人满足了最低用人门槛吗?
我曾经读到过有一些组织想要开发这类认证项目,也参与讨论过一些很酷的想法。最大的挑战在于要确切地弄清楚需要测试的内容。如若想要识别优秀的分析专家,我们前面已经很细致地讲过,技术敏感度很容易测试,但单纯参考关于技术的评价就是一种赌注。判断一个人是否会写程序或者能够理解线性回归方法背后的假设,这些并不困难。但是,创造力要怎么测试?直觉要怎么测试?商业头脑要怎么测试?演讲能力和沟通技巧要怎么测试?分析场景下的这些特质要怎么测试?这些方面要困难得多。
让分析专家展示他们有能力也有意愿通过类似的考试,当然也不错。问题是任何从成本和有效性方面制订的认证都会主要侧重于对技术能力的考察。虽然这类考试会变成赌注筹码,但至少能证明一个人是否有技术能力,以及是否有足够的意愿去考取认证证书。但我们在这些技术能力的基础上,还得弄清楚他们是否还具备了我们所需要的其他能力,例如创造力。以这种方式来考虑问题,认证项目就是好事情。如果只是作为一种指标或者标准,认证项目将无法满足我们的需要。
分析圈子将会广泛采用认证项目吗?如果制订认证项目的各类机构都能给市场带来一些新鲜气息,久而久之肯定会有一两个赢家冒出来。但是,不管考试本身组织得有多好,用人单位也不应该单纯参考技术认证来进行招聘。根据我先前关于工作需求清单的讨论,用人单位甚至并不想用认证作为强制性要求。但只要认证考试运用得当,它们还是有价值的。
说到这里,谁是优秀的分析专家应该很明白了。他们“拥有”数据,他们知道如何使用这些数据,他们也知道如何组织这些数据,他们还能发现数据中的模式。优秀的分析专家能够“解决”业务问题,他们了解业务人员需求的重要性,也了解为什么需要解决这些问题,他们了解现实约束,了解如何解答业务人员提出的问题。优秀的分析专家“了解”如何正确地描述问题,收入重要,还是利润重要?问题真正的关键点在哪里,为什么要这么说?分析应该怎样设计?最后,优秀的分析专家“知道”不能只把自己当成科学家,业内最好的分析专家毫无疑问也是艺术家!