使用Python实现Hadoop MapReduce程序

转自:使用Python实现Hadoop MapReduce程序

英文原文:Writing an Hadoop MapReduce Program in Python

根据上面两篇文章,下面是我在自己的ubuntu上的运行过程。文字基本采用博文使用Python实现Hadoop MapReduce程序,  打字很浪费时间滴。 

在这个实例中,我将会向大家介绍如何使用Python 为 Hadoop编写一个简单的MapReduce程序。

尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现 Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py  的例子,你将了解到我在说什么。

我们想要做什么?

我们将编写一个简单的 MapReduce 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。

先决条件

编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)

如何在Ubuntu Linux 上搭建hadoop的单节点模式和伪分布模式,请参阅博文Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)

Python的MapReduce代码

使用Python编写MapReduce代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Reduce间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!
Map: mapper.py

将下列的代码保存在/usr/local/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x mapper.py)。

[python] view plain copy

  1. #!/usr/bin/env python  
  2.   
  3. import sys  
  4.   
  5. # input comes from STDIN (standard input)  
  6. for line in sys.stdin:  
  7.     # remove leading and trailing whitespace  
  8.     line = line.strip()  
  9.     # split the line into words  
  10.     words = line.split()  
  11.     # increase counters  
  12.     for word in words:  
  13.         # write the results to STDOUT (standard output);  
  14.         # what we output here will be the input for the  
  15.         # Reduce step, i.e. the input for reducer.py  
  16.         #  
  17.         # tab-delimited; the trivial word count is 1  
  18.         print '%s\t%s' % (word, 1)  

在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1" 迅速地,尽管<word>可能会在输入中出现多次,计算是留给后来的Reduce步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。Reduce: reducer.py

将代码存储在/usr/local/hadoop/reducer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。

同样,要注意脚本权限:chmod +x reducer.py

[python] view plain copy

  1. #!/usr/bin/env python  
  2.   
  3. from operator import itemgetter  
  4. import sys  
  5.   
  6. current_word = None  
  7. current_count = 0  
  8. word = None  
  9.   
  10. # input comes from STDIN  
  11. for line in sys.stdin:  
  12.     # remove leading and trailing whitespace  
  13.     line = line.strip()  
  14.   
  15.     # parse the input we got from mapper.py  
  16.     word, count = line.split('\t', 1)  
  17.   
  18.     # convert count (currently a string) to int  
  19.     try:  
  20.         count = int(count)  
  21.     except ValueError:  
  22.         # count was not a number, so silently  
  23.         # ignore/discard this line  
  24.         continue  
  25.   
  26.     # this IF-switch only works because Hadoop sorts map output  
  27.     # by key (here: word) before it is passed to the reducer  
  28.     if current_word == word:  
  29.         current_count += count  
  30.     else:  
  31.         if current_word:  
  32.             # write result to STDOUT  
  33.             print '%s\t%s' % (current_word, current_count)  
  34.         current_count = count  
  35.         current_word = word  
  36.   
  37. # do not forget to output the last word if needed!  
  38. if current_word == word:  
  39.     print '%s\t%s' % (current_word, current_count)  

测试你的代码(cat data | map | sort | reduce)

我建议你在运行MapReduce job测试前尝试手工测试你的mapper.py 和 reducer.py脚本,以免得不到任何返回结果

这里有一些建议,关于如何测试你的Map和Reduce的功能:

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ echo "foo foo quux labs foo bar quux" | ./mapper.py  
  2. foo      1  
  3. foo      1  
  4. quux     1  
  5. labs     1  
  6. foo      1  
  7. bar      1  
  8. quux     1  
  9. hadoop@derekUbun:/usr/local/hadoop$ echo "foo foo quux labs foo bar quux" |./mapper.py | sort |./reducer.py  
  10. bar     1  
  11. foo     3  
  12. labs    1  
  13. quux    2  

# using one of the ebooks as example input
# (see below on where to get the ebooks)

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ cat book/book.txt |./mapper.pysubscribe      1  
  2. to   1  
  3. our      1  
  4. email    1  
  5. newsletter   1  
  6. to   1  
  7. hear     1  
  8. about    1  
  9. new      1  
  10. eBooks.      1  

在Hadoop平台上运行Python脚本

为了这个例子,我们将需要一本电子书,把它放在/usr/local/hadpoop/book/book.txt之下
 

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ ls -l book  
  2. 总用量 636  
  3. -rw-rw-r-- 1 derek derek 649669  3月 12 12:22 book.txt  

复制本地数据到HDFS

在我们运行MapReduce job 前,我们需要将本地的文件复制到HDFS中:

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -copyFromLocal /usr/local/hadoop/book book  
  2. hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -ls  
  3. Found 3 items  
  4. drwxr-xr-x   - hadoop supergroup          0 2013-03-12 15:56 /user/hadoop/book  

执行 MapReduce job现在,一切准备就绪,我们将在运行Python MapReduce job 在Hadoop集群上。像我上面所说的,我们使用的是HadoopStreaming 帮助我们传递数据在Map和Reduce间并通过STDIN和STDOUT,进行标准化输入输出。

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar   
  2. -mapper /usr/local/hadoop/mapper.py   
  3. -reducer /usr/local/hadoop/reducer.py   
  4. -input book/*   
  5. -output book-output  

在运行中,如果你想更改Hadoop的一些设置,如增加Reduce任务的数量,你可以使用“-jobconf”选项:

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar   
  2. -jobconf mapred.reduce.tasks=4  
  3.   
  4. -mapper /usr/local/hadoop/mapper.py   
  5. -reducer /usr/local/hadoop/reducer.py   
  6. -input book/*   
  7. -output book-output   

如果上面两个运行出错,请参考下面一段代码。注意,重新运行,需要删除dfs中的output文件

[plain] view plain copy

  1. bin/hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar    
  2. -mapper task1/mapper.py    
  3. -file task1/mapper.py    
  4. -reducer task1/reducer.py    
  5. -file task1/reducer.py    
  6. -input url   
  7. -output url-output    
  8. -jobconf mapred.reduce.tasks=3   

一个重要的备忘是关于Hadoop does not honor mapred.map.tasks 这个任务将会读取HDFS目录下的book并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的book-output目录。之前执行的结果如下:

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ hadoop jar contrib/streaming/hadoop-streaming-1.1.2.jar -jobconf mapred.reduce.tasks=4 -mapper /usr/local/hadoop/mapper.py -reducer /usr/local/hadoop/reducer.py -input book/* -output book-output  
  2. 13/03/12 16:01:05 WARN streaming.StreamJob: -jobconf option is deprecated, please use -D instead.  
  3. packageJobJar: [/usr/local/hadoop/tmp/hadoop-unjar4835873410426602498/] [] /tmp/streamjob5047485520312501206.jar tmpDir=null  
  4. 13/03/12 16:01:06 INFO util.NativeCodeLoader: Loaded the native-hadoop library  
  5. 13/03/12 16:01:06 WARN snappy.LoadSnappy: Snappy native library not loaded  
  6. 13/03/12 16:01:06 INFO mapred.FileInputFormat: Total input paths to process : 1  
  7. 13/03/12 16:01:06 INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop/tmp/mapred/local]  
  8. 13/03/12 16:01:06 INFO streaming.StreamJob: Running job: job_201303121448_0010  
  9. 13/03/12 16:01:06 INFO streaming.StreamJob: To kill this job, run:  
  10. 13/03/12 16:01:06 INFO streaming.StreamJob: /usr/local/hadoop/libexec/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201303121448_0010  
  11. 13/03/12 16:01:06 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201303121448_0010  
  12. 13/03/12 16:01:07 INFO streaming.StreamJob:  map 0%  reduce 0%  
  13. 13/03/12 16:01:10 INFO streaming.StreamJob:  map 100%  reduce 0%  
  14. 13/03/12 16:01:17 INFO streaming.StreamJob:  map 100%  reduce 8%  
  15. 13/03/12 16:01:18 INFO streaming.StreamJob:  map 100%  reduce 33%  
  16. 13/03/12 16:01:19 INFO streaming.StreamJob:  map 100%  reduce 50%  
  17. 13/03/12 16:01:26 INFO streaming.StreamJob:  map 100%  reduce 67%  
  18. 13/03/12 16:01:27 INFO streaming.StreamJob:  map 100%  reduce 83%  
  19. 13/03/12 16:01:28 INFO streaming.StreamJob:  map 100%  reduce 100%  
  20. 13/03/12 16:01:29 INFO streaming.StreamJob: Job complete: job_201303121448_0010  
  21. 13/03/12 16:01:29 INFO streaming.StreamJob: Output: book-output  
  22. hadoop@derekUbun:/usr/local/hadoop$  

如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。
当Hadoop集群在执行时,你可以使用浏览器访问 http://localhost:50030/ :

检查结果是否输出并存储在HDFS目录下的book-output中:

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -ls book-output  
  2. Found 6 items  
  3. -rw-r--r--   2 hadoop supergroup          0 2013-03-12 16:01 /user/hadoop/book-output/_SUCCESS  
  4. drwxr-xr-x   - hadoop supergroup          0 2013-03-12 16:01 /user/hadoop/book-output/_logs  
  5. -rw-r--r--   2 hadoop supergroup         33 2013-03-12 16:01 /user/hadoop/book-output/part-00000  
  6. -rw-r--r--   2 hadoop supergroup         60 2013-03-12 16:01 /user/hadoop/book-output/part-00001  
  7. -rw-r--r--   2 hadoop supergroup         54 2013-03-12 16:01 /user/hadoop/book-output/part-00002  
  8. -rw-r--r--   2 hadoop supergroup         47 2013-03-12 16:01 /user/hadoop/book-output/part-00003  
  9. hadoop@derekUbun:/usr/local/hadoop$  

可以使用dfs -cat 命令检查文件目录

[plain] view plain copy

  1. hadoop@derekUbun:/usr/local/hadoop$ hadoop dfs -cat book-output/part-00000  
  2. about   1  
  3. eBooks.     1  
  4. the     1  
  5. to  2  
  6. hadoop@derekUbun:/usr/local/hadoop$   

下面是原英文作者mapper.py和reducer.py的两个修改版本:

mapper.py

[python] view plain copy

  1. #!/usr/bin/env python  
  2. """A more advanced Mapper, using Python iterators and generators."""  
  3.   
  4. import sys  
  5.   
  6. def read_input(file):  
  7.     for line in file:  
  8.         # split the line into words  
  9.         yield line.split()  
  10.   
  11. def main(separator='\t'):  
  12.     # input comes from STDIN (standard input)  
  13.     data = read_input(sys.stdin)  
  14.     for words in data:  
  15.         # write the results to STDOUT (standard output);  
  16.         # what we output here will be the input for the  
  17.         # Reduce step, i.e. the input for reducer.py  
  18.         #  
  19.         # tab-delimited; the trivial word count is 1  
  20.         for word in words:  
  21.             print '%s%s%d' % (word, separator, 1)  
  22.   
  23. if __name__ == "__main__":  
  24.     main()  

reducer.py

[python] view plain copy

  1. #!/usr/bin/env python  
  2. """A more advanced Reducer, using Python iterators and generators."""  
  3.   
  4. from itertools import groupby  
  5. from operator import itemgetter  
  6. import sys  
  7.   
  8. def read_mapper_output(file, separator='\t'):  
  9.     for line in file:  
  10.         yield line.rstrip().split(separator, 1)  
  11.   
  12. def main(separator='\t'):  
  13.     # input comes from STDIN (standard input)  
  14.     data = read_mapper_output(sys.stdin, separator=separator)  
  15.     # groupby groups multiple word-count pairs by word,  
  16.     # and creates an iterator that returns consecutive keys and their group:  
  17.     #   current_word - string containing a word (the key)  
  18.     #   group - iterator yielding all ["<current_word>", "<count>"] items  
  19.     for current_word, group in groupby(data, itemgetter(0)):  
  20.         try:  
  21.             total_count = sum(int(count) for current_word, count in group)  
  22.             print "%s%s%d" % (current_word, separator, total_count)  
  23.         except ValueError:  
  24.             # count was not a number, so silently discard this item  
  25.             pass  
  26.   
  27. if __name__ == "__main__":  
  28.     main()  
时间: 2024-10-26 15:33:46

使用Python实现Hadoop MapReduce程序的相关文章

《R与Hadoop大数据分析实战》一2.5 在R环境中编写Hadoop MapReduce程序的方式

2.5 在R环境中编写Hadoop MapReduce程序的方式 我们知道对将R工具用于分析的统计学家.网络分析师以及产品经理来说,用MapReduce进行Hadoop大数据处理是一件非常重要的事,因为补充MapReduce的编程知识对于用Hadoop将分析整合到MapReduce来说是必要的.并且,我们知道R是一个一直以来普及程度逐步提升的工具:为了整合R,有许多程序包和函数库一直在改进.因此为了研发基于R和Hadoop计算能力运行的MapReduce算法程序,我们需要R和Hadoop的中间软

《R与Hadoop大数据分析实战》一第2章 编写Hadoop MapReduce程序

第2章 编写Hadoop MapReduce程序 在第1章中,我们学习了如何搭建R和Hadoop开发环境.既然我们对大数据分析感兴趣,接下来就学习如何使用Hadoop MapReduce进行大数据处理.在本章中,我们要讨论MapReduce的基础概念,为何它是不可或缺的,以及如何在Apache Hadoop上进行MapReduce编程等内容.本章节将会涉及如下内容:MapReduce基础概念Hadoop MapReduce技术Hadoop MapReduce原理编写Hadoop MapReduc

用PHP和Shell写Hadoop的MapReduce程序_php实例

使得任何支持标准IO (stdin, stdout)的可执行程序都能成为hadoop的mapper或者 reducer.例如: 复制代码 代码如下: hadoop jar hadoop-streaming.jar -input SOME_INPUT_DIR_OR_FILE -output SOME_OUTPUT_DIR -mapper /bin/cat -reducer /usr/bin/wc 在这个例子里,就使用了Unix/Linux自带的cat和wc工具来作为mapper / reducer

《R与Hadoop大数据分析实战》一2.4 编写Hadoop MapReduce示例程序

2.4 编写Hadoop MapReduce示例程序 现在要通过一个很简单且普通的单词统计(word count)来学习MapReduce.该例子的目标是统计每个单词在文章中出现的次数.这些文章作为MapReduce的输入文件. 在该例中,已经准备了一些文本文件,我们希望计算所有单词在这些文件中出现的频率.我们通过Hadoop MapReduce来进行设计. 本节中,将使用旧版API接口学习Hadoop MapReduce编程.假设读者已经配置了Hadoop的环境变量(请参考第1章的内容).同时

《Hadoop MapReduce实战手册》一1.3 写WordCountMapReduce示例程序,打包并使用独立的Hadoop运行它

1.3 写WordCountMapReduce示例程序,打包并使用独立的Hadoop运行它 Hadoop MapReduce实战手册本节传授如何写一个简单的MapReduce程序,以及如何执行它,如图1-1所示. 要运行MapReduce作业,用户需要提供一个map函数.一个reduce函数.输入数据,以及输出数据的位置.在执行时,Hadoop实际执行如下步骤. Hadoop通过换行符将输入数据分解成多个数据项,并且在每一个数据项上运行一次map函数,将这个数据项作为对应map函数的输入.执行完

《Hadoop与大数据挖掘》——2.6 TF-IDF算法原理及Hadoop MapReduce实现

2.6 TF-IDF算法原理及Hadoop MapReduce实现 2.6.1 TF-IDF算法原理 原理:在一份给定的文件里,词频(Term Frequency,TF)指的是某一个给定的词语在该文件中出现的次数.这个数字通常会被正规化,以防止它偏向长的文件(同一个词语在长文件里可能会比在短文件里有更高的词频,而不管该词语重要与否).逆向文件频率(Inverse Document Frequency,IDF)是一个词语普遍重要性的度量.某一特定词语的IDF可以由总文件数目除以包含该词语的文件的数

高可用Hadoop平台-运行MapReduce程序

1.概述 最近有同学反应,如何在配置了HA的Hadoop平台运行MapReduce程序呢?对于刚步入Hadoop行业的同学,这个疑问却是会存在,其实仔细想想,如果你之前的语言功底不错的,应该会想到自动重连,自动重连也可以帮我我们解决运行MapReduce程序的问题.然后,今天我赘述的是利用Hadoop的Java API 来实现. 2.介绍 下面直接附上代码,代码中我都有注释. 2.1Java操作HDFS HA的API 代码如下: /** * */ package cn.hdfs.mr.examp

《深入理解Hadoop(原书第2版)》——3.3一个MapReduce程序的组成

3.3一个MapReduce程序的组成 本节介绍基于Java语言的MapReduce程序由哪些部分构成.下文逐一讲解了各个组成部分: Java程序客户机(Client Java program):一个Java程序,由集群中的一个客户端节点(又被称为边缘节点)提交运行.这个客户端节点可以访问Hadoop集群,它经常(并不总是)由集群中的一个数据节点来充当.该节点仅是集群中的一台机器,并且有权限访问Hadoop. 自定义Mapper类(Custom Mapper class):除非在最简单的应用场景

java-Eclipse里如何debug跟踪MapReduce程序到hadoop源码里?

问题描述 Eclipse里如何debug跟踪MapReduce程序到hadoop源码里? 我本地一台机子起了 4504 ResourceManager 4066 DataNode 4761 NodeManager 5068 JobHistoryServer 4357 SecondaryNameNode 3833 NameNode 5127 Jps 在hadoop-env.sh里设置了HADOOP_OPTS="$HADOOP_OPTS -Xdebug -Xrunjdwp:transport=dt_