学习笔记TF062:TensorFlow线性代数编译框架XLA

XLA(Accelerated Linear Algebra),线性代数领域专用编译器(demain-specific compiler),优化TensorFlow计算。即时(just-in-time,JIT)编译或提前(ahead-of-time,AOT)编译实现XLA,有助于硬件加速。XLA还在试验阶段。https://www.tensorflow.org/versions/master/experimental/xla/

XLA优势。线性代数领域专用编译器,优化TensorFlow计算的执行速度(编译子图减少生命周期较短操作执行时间,融合管道化操作减少内存占用)、内存使用(分析、规划内存使用需求,消除许多中间结果缓存)、自定义操作依赖(提高自动化融合底层操作low-level op性能,达到手动融合自定义操作custom op效果)、移动端内存占用(提前AOT编译子图减少TensorFlow执行时间,共享头文件对被其他程序直接链接)、可移植性方面(为新硬件开发新后端,TensorFlow不需要更改很多代码用在新硬件设备上)。

XLA工作原理。LLVM编译器框架系统,C++编写,优化任意编程语言缩写程序编译时间(compile time)、链接时间(link time)、运行时间(run time)、空闲时间(idle time)。前端解析、验证、论断输入代码错误,解析代码转换LLVM中间表示(intermdediate representation,IR)。IR分析、优化改进代码,发送到代码生成器,产生本地机器代码。三相设计LLVM实现。最重要,LLVM IR。编译器IR表示代码。C->Clang C/C++/ObjC前端、Fortran->llvm-gcc前端、Haskell->GHC前端 LLVM IR-> LLVM 优化器 ->LLVM IR LLVM X86后端->X86、LLVM PowerPC后端->PowerPC、LLVM ARM后端->ARM。http://www.aosabook.org/en/llvm.html
XLA输入语言HLO IR,XLA HLO定义图形,编译成各种体系结构机器指令。编译过程。XLA HLO->目标无关优化分析->XLA HLO->XLA后端->目标相关优化分析->目标特定代码生成。XLA首先进行目标无关优化分析(公共子表达式消除common subexpression elimination CSE,目标无关操作融合,运行时内存缓冲区分析)。XLA将HLO计算发送到后端。后端执行进一步HLO级目标不相关优化分析。XLA GPU后端执行对GPU编程模型有益操作融合,确定计算划分成流。生成目标特定代码。XLA CPU、GPU后端用LLVM中间表示、优化、代码生成。后端用LLVM IR表示XLA HLO计算。XLA 支持x86-64、NVIDIA GPU JIT编译,x86-64、ARM AOT编译。AOT更适合移动、嵌入式深度学习应用。

JIT编译方式。XLA编译、运行TensorFlow计算图一部分。XLA 将多个操作(内核)融合到少量编译内核,融合操作符减少存储器带宽提高性能。XLA 运行TensorFlow计算方法。一,打开CPU、GPU设备JIT编译。二,操作符放在XLA_CPU、XLA_GPU设备。
打开JIT编译。在会话打开。把所有可能操作符编程成XLA计算。

config = tf.ConfigProto()
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
sess = tf.Session(config=config)

为一个或多个操作符手动打开JIT编译。属性_XlaCompile = true标记编译操作符。

jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
x = tf.placeholder(np.float32)
with jit_scope():
  y = tf.add(x, x)

操作符放在XLA设备。有效设备XLA_CPU、XLA_GPU:

with tf.device("/job:localhost/replica:0/task:0/device:XLA_GPU:0"):
  output = tf.add(input1, input2)

JIT编译MNIST实现。https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_softmax_xla.py
不使用XLA运行。

python mnist_softmax_xla.py --xla=false

运行完成生成时间线文件timeline.ctf.json,用Chrome跟踪事件分析器 chrome://tracing,打开时间线文件,呈现时间线。左侧列出GPU,可以看操作符时间消耗情况。
用XLA训练模型。

TF_XLA_FLAGS=--xla_generate_hlo_graph=.* python mnist_softmax_xla.py

XLA框架处于试验阶段,AOT主要应用场景内存较小嵌入式设备、手机、树莓派。

from future import absolute_import
from future import division
from future import print_function
import argparse
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import timeline
FLAGS = None
def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])
  w = tf.Variable(tf.zeros([784, 10]))
  b = tf.Variable(tf.zeros([10]))
  y = tf.matmul(x, w) + b
  # Define loss and optimizer
  y_ = tf.placeholder(tf.float32, [None, 10])
  # The raw formulation of cross-entropy,
  #
  #   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
  #                                 reduction_indices=[1]))
  #
  # can be numerically unstable.
  #
  # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
  # outputs of 'y', and then average across the batch.
  cross_entropy = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
  train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
  config = tf.ConfigProto()
  jit_level = 0
  if FLAGS.xla:
    # Turns on XLA JIT compilation.
    # 开启XLA JIT编译
    jit_level = tf.OptimizerOptions.ON_1
  config.graph_options.optimizer_options.global_jit_level = jit_level
  run_metadata = tf.RunMetadata()
  sess = tf.Session(config=config)
  tf.global_variables_initializer().run(session=sess)
  # Train
  # 训练
  train_loops = 1000
  for i in range(train_loops):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    # Create a timeline for the last loop and export to json to view with
    # chrome://tracing/.
    # 在最后一次循环创建时间线文件,用chrome://tracing/打开分析
    if i == train_loops - 1:
      sess.run(train_step,
               feed_dict={x: batch_xs,
                          y_: batch_ys},
               options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
               run_metadata=run_metadata)
      trace = timeline.Timeline(step_stats=run_metadata.step_stats)
      with open('timeline.ctf.json', 'w') as trace_file:
        trace_file.write(trace.generate_chrome_trace_format())
    else:
      sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
  # Test trained model
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  print(sess.run(accuracy,
                 feed_dict={x: mnist.test.images,
                            y_: mnist.test.labels}))
  sess.close()
if name == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--data_dir',
      type=str,
      default='/tmp/tensorflow/mnist/input_data',
      help='Directory for storing input data')
  parser.add_argument(
      '--xla', type=bool, default=True, help='Turn xla via JIT on')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

参考资料:
《TensorFlow技术解析与实战》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

时间: 2024-11-05 12:10:36

学习笔记TF062:TensorFlow线性代数编译框架XLA的相关文章

学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving

学习笔记TF066:TensorFlow移动端应用,iOS、Android系统实践

TensorFlow对Android.iOS.树莓派都提供移动端支持. 移动端应用原理.移动端.嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应:二在本地运行模型,PC训练模型,放到移动端预测.向服务端请求数据可行性差,移动端资源稀缺.本地运行实时性更好.加速计算,内存空间和速度优化.精简模型,节省内存空间,加快计算速度.加快框架执行速度,优化模型复杂度和每步计算速度. 精简模型,用更低权得精度,量化(quantization).权重剪枝(weight pru

学习笔记TF064:TensorFlow Kubernetes

AlphaGo,每个实验1000个节点,每个节点4个GPU,4000 GPU.Siri,每个实验2个节点,8个GPU.AI研究,依赖海量数据计算,离性能计算资源.更大集群运行模型,把周级训练时间缩短到天级小时级.Kubernetes,应用最广泛容器集群管理工具,分布式TensorFlow监控.调度生命周期管理.容器集群自动化部署.扩容.运维开源平台,提供任务调度.监控.失败重启.TensorFlow.Kubernetes都是谷歌公司开源.https://kubernetes.io/ .谷歌云平台

【PMP】Head First PMP 学习笔记 第三章 过程框架

第三章 过程框架 项目中完成的所有工作都由过程构成. 项目中的完成的所有工作都有一个模式(pattern).先计划,再去做.工作时,总是对项目与原先的计划进行比较.如果开始偏离计划,就要由你做出矫正,让一切重新走上正轨.过程框架--过程租和知识领域--正式这一切顺利完成的关键. 分阶段管理 分阶段,项目的每个阶段(phase)都会经过5个过程租,从启动到收尾,项目的多个阶段就会存在各种关联关系 顺序关系(sequenital relationship).多个阶段相继发生并不存在重叠,每个阶段在前

J2EE学习笔记(4) 软件工程与系统框架

J道的老大banq曾经说过设计模式是衡量一个程序员水平高低最重要的标准.个人非常赞同这个观点,从这个角度看学好J2EE第一个要了解的就是作为一个庞大复杂的系统,它是如何由各个模块拼装并协同有效地运作.先来几个定义暖暖身 Definitions of Different Dimensions in J2EE Tiers: A logical or physical organization of components into an ordered chain of service provide

thinkphp学习笔记3—项目编译和调试模式

原文:thinkphp学习笔记3-项目编译和调试模式 1.项目编译 在章节2.4项目编译中作者讲到使用thinkphp的项目在第一次运行的时候会吧核心需要加载的文件去掉空白和注释合并到一个文件中编译并缓存,第二次运行时直接载入编译缓存,这样省去一些IO开销,加快执行速度.并且在3.0以上的版本中海做了一些优化: 1.合并和兴编译缓存和项目编译缓存,不再生成两个缓存文件 2.直接对本地环境生成设置和常量定义减少环境判断 3.编译缓存可以直接替换框架入口甚至项目入口,甚至脱离框架独立运行 4.通过参

mybatis学习笔记之基础框架(2)

mybatis学习笔记之基础框架(2) mybatis是一个持久层的框架,是apache下的顶级项目. mybatis让程序将主要精力放在sql上,通过mybatis提供的映射方式,自由灵活生成满足sql语句 mybatis可将向prparedStatement中的输入参数自动进行输入映射,将查询结果集灵活映射成java对象.(输出映射) SqlMapConfig.xml(是mybatis的全局配置文件,名称不固定) 配置了数据源/事务等mybatis运行环境 配置映射文件(配置sql语句) m

CI框架学习笔记(二) -入口文件index.php_php实例

上一节(CI框架学习笔记(一) - 环境安装.基本术语和框架流程)中,我们提到了CI框架的基本流程,这里再次贴出流程图,以备参考: 作为CI框架的入口文件,源码阅读,自然由此开始.在源码阅读的过程中,我们并不会逐行进行解释,而只解释核心的功能和实现. 1. 设置应用程序环境 define('ENVIRONMENT', 'development'); 这里的development可以是任何你喜欢的环境名称(比如dev,再如test),相对应的,你要在下面的switch case代码块中,对设定的环

【深度学习笔记】(二)Hello, Tensorflow!

[深度学习笔记](二)Hello, Tensorflow! 一.安装 官方安装的方式很多种,本文采用Docker方式.Docker的深入使用文案很长很多,但我们都不需要,我们的主要目的还是Tensorflow,所以只需要基本的使用即可.PS:打开Tensorflow官网是需要翻墙的,所以上面的一些链接不能翻墙的情况下是打不开的,然鹅!Docker不需要翻墙就能打开,所以用Docker来安装Tensorflow就是为了绕墙而走. 1.Docker安装 既然不用翻墙,首先就是点我下载安装包,打开页面