泛函编程(16)-泛函状态-Functional State

    初接触泛函状态觉着很不习惯。主要是在使用State数据类型时很难理解其中的原理,特别是泛函状态变迁机制(state transition mechanism):怎么状态就起了变化,实在难以跟踪。我想这主要是因为状态变迁机制经过了函数组合,已经深深的埋藏在运行代码后面。上节我们讨论到RNG,对于了解State类型是个很好的开头。RNG简单描述了泛函方式的状态变迁及支持状态变迁所需要的数据结构和操作函数款式。

    在上节我们提到过 type Rand[+A] = RNG => (A, RNG),Rand是一个随意数产生函数。由于Rand是个类型,一个函数类型,所以可以被当作参数或者返回值来使用。我们把这个定义再扩展一下,变得更通用一些:type State[S, +A] = S => (A, S)。Rand就是State的一个特殊案例:type Rand[+A] = State[RNG, +A] 。我们称State为状态行为,即S => (A,S)是一个定义状态变迁方式的函数。State类型的状态变迁机制就是通过状态行为函数来确定的。再次聚焦一下我们设计State类型的目标:State类型不但可以使我们像设计其它类型一样封装一个较低阶类型元素并且提供一套状态变迁机制,而且状态变迁机制是泛函式的,自然隐性的。

我们先试试简单的State类型设计:

1 case class State[S,+A](run: S => (A, S)) 

没错,就是这么简单,也是我刻意为之。注意状态行为函数run是State类的内部成员,我们有针对性的把一个State的状态变迁机制通过在构建State类时作为参数注入。然后产生的State实例就会按照我们期待的那样进行状态变迁了。case class自备了apply,这样我们可以直接使用State(???)创建State实例。我会把State(s => (a,s))写成State { s => (a,s)},这样表达传入的是一段代码会更形象自然一点。State[]既然是一个高阶类型,那么我们应该也为它提供一套在管子内部进行元素操作的函数。切记!切记!在处理管子内封装元素值的同时要按照状态行为函数的要求对类型状态进行相应变迁。

先从高阶类型最基本的组件开始:

1 object State {
2     def unit[S,A](a: A) = State[S,A](s => (a, s))
3 }

我们前面接触过这个unit。它就是一个封装元素值和状态都不转变的State实例。unit的唯一功能就是把低阶一级的封装元素类型a升格为State类型。

我们来编写一个State函数,切记!切记!要同时处理状态变迁机制:

1 case class State[S,+A](run: S => (A, S)) {
2     def flatMap[B](f: A => State[S,B]): State[S,B] = State[S,B] {
3         s => {
4             val (a, s1) = run(s)
5             f(a).run(s1)
6         }
7     }

在flatMap里我们用函数f处理了封装元素a, f(a)。同时我们又引用了状态行为函数run对传入的状态s进行了状态变迁 run(s)。

1     def map[B](f: A => B): State[S,B] = State[S,B] {
2         s => {
3             val (a, s1) = run(s)
4             (f(a),s1)
5         }
6     }
7     def map_1[B](f: A => B): State[S,B] = {
8         flatMap { a => unit(f(a)) }
9     }

同样,map也实施了f(a),run(s)。map也可以用flatMap来实现。它们之间的分别只是f: A => B 和 A => State[S,B]。因为我们有unit, unit(a) = State[S,A],unit(f(a)) = State[S,B]所以我们用unit把map的函数参数A升格就行了。用flatMap来实现map可以把map抽升到更高级:这样map就不用再理会那个状态行为函数了。

那么map2呢?

1     def map2[B,C](sb: State[S,B])(f: (A,B) => C): State[S,C] = {
2         flatMap {a => sb.map { b => f(a,b) }}
3     }
4     def map3[B,C,D](sb: State[S,B], sc: State[S,C])(f: (A,B,C) => D): State[S,D] = {
5         flatMap {a => sb.flatMap {b => sc.map { c => f(a,b,c) }}}
6     }

map2的功能是用封装元素类型函数(A,B) => C来把两个State管子里的元素结合起来。我们可以施用flatMap两次来把两个管子里的元素结合起来。对于map3我们可以再加一次。

另一种连续施用flatMap的表达方式:

 1     def map2_1[B,C](sb: State[S,B])(f: (A,B) => C): State[S,C] ={
 2         for {
 3             a <- this
 4             b <- sb
 5         } yield f(a,b)
 6     }
 7     def map3_1[B,C,D](sb: State[S,B], sc: State[S,C])(f: (A,B,C) => D): State[S,D] ={
 8         for {
 9             a <- this
10             b <- sb
11             c <- sc
12         } yield f(a,b,c)
13     }

以上的语法糖(syntatic sugar)for-comprehension让我们俨然进入了一个泛函世界,好像有了一种兴奋的感觉。这种表达形式简洁直白,更加容易理解。同样,在map2,map3里没有涉及到任何状态变迁的东西。我们实现了状态变迁的隐形操作。

下面举个切实例子来示范泛函状态:

 1 //Stack类型就是一个List[Int],后面比较容易表达点
 2 type Stack = List[Int]
 3 //pop就是一个State实例。它的状态行为函数是partial function:把一个现成的List[Int]拆分成新的值和状态
 4 //即把第一个元素去掉放到值里
 5 def pop = State[Stack, Int]{ case x::xs => (x, xs) }
 6                                                   //> pop: => ch6.state.State[ch6.state.Stack,Int]
 7 //push就是一个State实例。它的状态行为函数把i压到一个现成的List[Int]上,跟值没有任何关系
 8 def push(i: Int) = State[Stack, Unit]{ case xs => ((), i :: xs ) }
 9                                                   //> push: (i: Int)ch6.state.State[ch6.state.Stack,Unit]
10 def stackRun: State[Stack, Int] = {
11     for {
12         _ <- push(13)
13         a <- pop
14         b <- pop
15     } yield a+b
16 }                                                 //> stackRun: => ch6.state.State[ch6.state.Stack,Int]
17
18 val (a, s) =stackRun.run(List(10,11,12))          //> a  : Int = 23
19                                                   //| s  : ch6.state.Stack = List(11, 12)

在stackRun里我们没有在任何地方提到状态Stack,但看看运行结果(a,s):不但返回值是正确的,而且Stack状态也默默地发生了转变。如果尝试从stackRun的代码里去分析状态是如何转变的是永远无法理解的,建议还是老老实实从头来吧。

泛函状态是一种隐形自动的变迁,那么如果我们需要打乱既定流程,手动设定或者临时读取状态时该怎么办呢?

1 object State {
2     def unit[S,A](a: A) = State[S,A](s => (a, s))
3     def getState[S]: State[S,S] = State[S,S] { s => (s,s) }
4   def setState[S](s: S): State[S,Unit] = State[S,Unit] { _ => ((),s)}
5
6 }

还是通过状态行为函数来实现的。

 1 def stackRun: State[Stack, Int] = {
 2     for {
 3         _ <- push(13)
 4         a <- pop
 5         _ <- setState(List(8,9))
 6         b <- pop
 7         s1 <- getState
 8     } yield (a + b)
 9 }                                                 //> stackRun: => ch6.state.State[ch6.state.Stack,Int]
10
11 val (a, s) =stackRun.run(List(10,11,12))          //> a  : Int = 21
12                                                   //| s  : ch6.state.Stack = List(9)

我们可以临时将状态设置成List(8,9)。

时间: 2024-09-20 15:37:40

泛函编程(16)-泛函状态-Functional State的相关文章

泛函编程(5)-数据结构(Functional Data Structures)

  编程即是编制对数据进行运算的过程.特殊的运算必须用特定的数据结构来支持有效运算.如果没有数据结构的支持,我们就只能为每条数据申明一个内存地址了,然后使用这些地址来操作这些数据,也就是我们熟悉的申明变量再对变量进行读写这个过程了.试想想如果没有数据结构,那我们要申明多少个变量呢.所以说,数据结构是任何编程不可缺少的元素.     泛函编程使用泛函数据结构(Functional Data Structure)来支持泛函程序.泛函数据结构的特点是"不可变特性"(Immutability)

泛函编程(15)-泛函状态-随意数产生器

  对于OOP程序员来说,泛函状态变迁(functional state transition)是一个陌生的课题.泛函状态变迁是通过泛函状态数据类型(functional state)来实现的.State是一个出现在泛函编程里的类型(type).与其它数据类型一样,State同样需要自身的一套泛函操作函数和组合函数(combinators),我们将在以下章节中讨论有关State数据类型的设计方案.      在正式介绍State类型前,我们先从随意数产生器(RNG: Random Number

泛函编程(34)-泛函变量:处理状态转变-ST Monad

  泛函编程的核心模式就是函数组合(compositionality).实现函数组合的必要条件之一就是参与组合的各方程序都必须是纯代码的(pure code).所谓纯代码就是程序中的所有表达式都必须是Referentially Transparent(RT,等量可替换的),它的意思是:在一段程序p中,所有的表达式e都可以用e的运算结果替代而不影响到p的运算结果,那么e就是RT等量可替换的,也就是说程序p是由纯代码组成的.但如果程序p中包含了一些变量,这些变量的状态就会影响到程序中e的运算结果,那

泛函编程(35)-泛函Stream IO:IO处理过程-IO Process

    IO处理可以说是计算机技术的核心.不是吗?使用计算机的目的就是希望它对输入数据进行运算后向我们输出计算结果.所谓Stream IO简单来说就是对一串按序相同类型的输入数据进行处理后输出计算结果.输入数据源可能是一串键盘字符.鼠标位置坐标.文件字符行.数据库纪录等.如何实现泛函模式的Stream IO处理则是泛函编程不可或缺的技术. 首先,我们先看一段较熟悉的IO程序: 1 import java.io._ 2 def linesGt4k(fileName: String): IO[Boo

泛函编程(25)-泛函数据类型-Monad-Applicative

    上两期我们讨论了Monad.我们说Monad是个最有概括性(抽象性)的泛函数据类型,它可以覆盖绝大多数数据类型.任何数据类型只要能实现flatMap+unit这组Monad最基本组件函数就可以变成Monad实例,就可以使用Monad组件库像for-comprehension这样特殊的.Monad具备的泛函式数据结构内部的按序计算运行流程.针对不同的数据类型,flatMap+unit组件实现方式会有所不同,这是因为flatMap+unit代表着承载数据类型特别的计算行为.之前我们尝试了Li

泛函编程(29)-泛函实用结构:Trampoline-不再怕StackOverflow

  泛函编程方式其中一个特点就是普遍地使用递归算法,而且有些地方还无法避免使用递归算法.比如说flatMap就是一种推进式的递归算法,没了它就无法使用for-comprehension,那么泛函编程也就无法被称为Monadic Programming了.虽然递归算法能使代码更简洁易明,但同时又以占用堆栈(stack)方式运作.堆栈是软件程序有限资源,所以在使用递归算法对大型数据源进行运算时系统往往会出现StackOverflow错误.如果不想办法解决递归算法带来的StackOverflow问题,

泛函编程(24)-泛函数据类型-Monad, monadic programming

   在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: 1 trait Monad[M[_]] extends Functor[M] { 2 def unit[A](a: A): M[A] 3 def flatMap[A,B](ma: M[A])(f:

泛函编程(38)-泛函Stream IO:IO Process in action

 在前面的几节讨论里我们终于得出了一个概括又通用的IO Process类型Process[F[_],O].这个类型同时可以代表数据源(Source)和数据终端(Sink).在这节讨论里我们将针对Process[F,O]的特性通过一些应用实例来示范它的组合性(composibility)和由数据源到接收终端IO全过程的功能完整性.   我们已经在前面的讨论中对IO Process的各种函数组合进行了调研和尝试,现在我们先探讨一下数据源设计方案:为了实现资源使用的安全性和IO程序的可组合性,我们必须

泛函编程(6)-数据结构-List基础

    List是一种最普通的泛函数据结构,比较直观,有良好的示范基础.List就像一个管子,里面可以装载一长条任何类型的东西.如需要对管子里的东西进行处理,则必须在管子内按直线顺序一个一个的来,这符合泛函编程的风格.与其它的泛函数据结构设计思路一样,设计List时先考虑List的两种状态:空或不为空两种类型.这两种类型可以用case class 来表现: 1 trait List[+A] {} 2 case class Cons[+A](head: A, tail: List[A]) exte

泛函编程(18)-泛函库设计-并行运算组件库

   作为专业的编程人员,我们经常会因为工作需要建立一些工具库.所谓工具库就是针对工作上经常会遇到的一些共性问题预先编制的由一整套函数所组成的函数库.通常这些工具库的功能都是在特别定制的一些数据类型支持下由一系列函数围绕着这些数据类型进行运算而实现的.在泛函编程范畴内也不例外.但在泛函工具库里的函数则更重视函数的组合能力(functional composition):因而泛函的工具库一般称为组件库(combinator library),库内函数则被称之为组件(combinator).组件库的