hadoop教程(八) map/reduce的读取和写入

write/read

参考《hadoop权威指南》书的63和66页

读取流程

写入流程

查看本栏目更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/webkf/tools/

时间: 2024-10-26 11:15:52

hadoop教程(八) map/reduce的读取和写入的相关文章

基于Hadoop的Map reduce编程(一)

翻译的一篇国外的关于hadoop mapreduce的文章,文章比较长,先翻译第一部分吧 翻译者:pconlin900 博客:http://pconline900.javaeye.com Hadoop是apache的一个开源的map-reduce框架,MapReduce是一个并行计算模型,用来处理海量数据.模型思想来源于google的Jeffrey Dean 和 Sanjay Ghemawat,包括map() reduce()两个主要的功能. 这是一个很简单的类似于Hadoop的MapReduc

Hadoop Map/Reduce教程

目的 这篇教程从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面. 先决条件 请先确认Hadoop被正确安装.配置和正常运行中.更多信息见: Hadoop快速入门对初次使用者. Hadoop集群搭建对大规模分布式集群. 概述 Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集. 一个Map/Reduce 作业(job) 通常会把输入的数据集切分为若

Hadoop 少量map/reduce任务执行慢问题

最近在做报表统计,跑hadoop任务. 之前也跑过map/reduce但是数据量不大,遇到某些map/reduce执行时间特别长的问题. 执行时间长有几种可能性: 1. 单个map/reduce任务处理的任务大.     需要注意每个任务的数据处理量大小不至于偏差太大.可以切割部分大文件. 2. map数量过多, reduce拉取各方数据慢     这种情况,可以在中间加一轮map过程A.     即map -> mapA - > reduce,来减少reduce拉取数据的源头的个数. 3.

王亟亟的Python学习之路(八)-函数式编程,map(),reduce(),filter()

转载请注明出处:王亟亟的大牛之路 首先在这里祝愿大家,新年快乐,工作顺利,BUG少少!!! 本来说是在春节假期内继续维持着写文章的进度,但是还是偷懒了几天(打了4天SC2哈哈哈) 今天上的是关于Python的文章,毕竟在亲戚家拜年,懒得插各类手机调试什么的,况且确实好久没有弄Python了,就写了,废话不多,开始正题!! 函数式编程 函数是什么? 把复杂的操作化为简单的函数分解成简单的操作,这种操作就是面向过程,也就是C这类的实现的大体概念. 函数式是什么? 函数没有变量,任意一个函数,只要输入

分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce 框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程度上,是为各种分布式计 算需求所服务的.我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分 布式计算上,我们可以将其视为增加了分布式支持的计算函数.从计算的角度上看, Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的 输出文件.而从分布式的角

MapReduce核心map reduce shuffle (spill sort partition merge)详解

  Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.Shuffle的正常意思是洗牌或弄乱,可能大家更熟悉的是Java API里Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里 Shuffle是什么,那么请看这张图:         这张是官方对Shuffle过程的描述.但我可以肯定的 是,单从这张图你基本不可能明白Shuffle的过程,

Map/Reduce Task JVM堆的大小设置优化

前一阵子发现用户提交的hive query和hadoop job会导致集群的load非常高,经查看配置,发现很多用户擅自将mapred.child.java.opts设置的非常大,比如-Xmx4096m(我们默认设置是-Xmx1024m),  导致了tasktracker上内存资源耗尽,进而开始不断swap磁盘上数据,load飙升 TaskTracker在spawn一个map/reduce task jvm的时候,会根据用户JobConf里面的值设定jvm的参数,然后写入一个taskjvm.sh

hadoop教程(五) 1.x的mapreduce过程图解

官方shuffle的架构图 从全局宏观上,解释了数据的走向和原理 细化架构图 从jobtracker和tasker解释了map/reduce的细节 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 1 首先用户程序 (JobClient) 提交了一个 job,job 的信息会发送到 Job Tracker 中,Job Tracker 是 Map-reduce 框架的中心,他需要与集群中的机器定时通信 (heartbeat), 需要管理哪些程序应该跑在哪些机器上,需要管理所有

A Map Reduce Implementation on Open Source Platform: EUCALYPTUS

A Map Reduce Implementation on Open Source Platform: EUCALYPTUS Nilesh Mangtani  Jyoti B. Rathi In this paper, we have tried to propose a solution of merging the Hadoop technology with the cloud by using a open-source platform EUCALYPTUS. Keywords:Ha