小白学数据分析----->SPSS探索分析实践操作[不同生命周期玩家的充值探索分析]

SPSS为我们提供了探索分析,所谓探索分析之所以是探索,是因为有时候我们对于变量的分布特点不是很清楚,探索的目的在于帮助我们完成以下的工作:

识别数据:例如数据的分布形式、异常值、缺失值;

正态性检验:服从正态分布的检验;

方差齐性检验:不同数据组的方差是否相等。

有关于方差齐性检验原理、正态分布这里不累述,这里主要介绍SPSS的探索分析使用。

数据文件

这里使用的文件是不同周期的充值用户的充值数据,这里主要是针对流失用户和活跃用户的充值数据。

具体操作

首先将源文件加载到SPSS中,选择菜单分析|描述统计|探索,如下图所示:

之后弹出对话框如下:

在该对话框中,有几个输入的位置:

因变量:为我们要分析的目标变量,变量多是连续性变量居多。

因子:是目标变量的分组,本例中,就是针对充值用户的充值金额进行分组,比如活跃和流失两组。

标注个案:对于异常值进行标注,识别异常值。

在此处,我们因变量选取充值总额,因子选取用户状态,标注个案我们选取服务器ID,如下图所示:

在该弹窗还有几个按钮,首先我们设置一下统计量按钮,打开统计量的窗口如下所示:

该弹窗的作用主要是设置输出时的统计量,在该弹窗可以看到以下的信息:

描述性:主要是完成输出一些我们之前说过的描述性统计的统计量,这些信息详见(http://www.cnblogs.com/yuyang-DataAnalysis/archive/2011/10/23/2221838.html)。同时这里还有一个置信区间的设置问题,这里默认的是95%,关于置信区间以后会说到,这里不再累述。

M-估计量:输出四种均值的稳健极大似然估计量,这里面有稳健估计量、非稳健估计量、波估计值、复权重估计量,有关于这部分的信息参见附件。

界外值:输出变量数据的前5个最大值和后5个最小值。

百分位数:变量数据的百分位数。

这里我们只选择描述性就可以了。接下来就是绘制对话框的设置了。

在此对话框中,有箱图、描述性、伸展与级别Levene检验三部分构成。首先来看箱图部分。

我们默认选择按因子水平分组,这标志着因变量的箱图将按照因子进行多个显示,此时就会有多个箱图,这取决于你分组的个数决定,当然不分组,就只会显示一个箱图,无,则就是不显示箱图。

描述性,则是选择输出的图形的种类而异。

伸展与级别Levene检验是设置数据转换的散步水平,其实就是对于原始数据变化的设置。有完成两个任务,一个是数据转换后的回归曲线斜率,另一个就是方差齐性检验。该部分主要有四种选项,无、幂估计、已转换、未转换。

无,则是不输出,变量的散步水平;

未转换,不对原始数据进行变换;

已转换,对因变量进行数据转换,方法有自然对数变换、1/平方根变换、倒数变换、平方根变换、立方变换。

幂估计,对每一个变量数据产生一个中位数的自然对数和四分位数的自然对数的散点图,对各变量的方差转化为同方差所需要的幂的估计。

在此处,我们选择无。

当然在这个对话框中,还有一个部分比较重要,那就是带检验的正态图。此选项能够输出正态概率图和离散概率图,且可以输出变量数据经Lilliefors显著水平修正的K-S和S-W的统计量。

下面就是选项对话框的设置了,该部分主要是针对缺失值的处理,方法有三种:

按列表排除个案:只要任何一个变量含有缺失值,就要踢出所有因变量或分组变量中有缺失值的观测记录。

按对排除个案:仅仅踢出所用到的变量的缺失值。

报告值:变量中存在缺失值单独作为一个类别进行统计,输出。

之后确定,结果输出,所有的结果会在查看器重显示,如下图:

报告分为几部分,摘要、描述统计、正态性检验、各种图形。

摘要部分

主要是确认是有缺失值情况信息。

描述统计部分

主要输出各项统计信息,参看描述性统计一文介绍。

正态性检验部分

Df表示自由度

Sig表示检验的显著水平,即P值,一般来说P值越大,越支持正态分布。

此处我们假设服从正态分布,根据K-S统计量和S-W统计量可以看出,两种用户的充值总额显著水平小于5%,即sig<0.05不服从正态分布。

图形部分

上图为茎叶图

Frequency表示数据的频数,stern表示茎,Leaf表示叶,两者表示数据的整数部分和小数部分,Stern width表示宽度。

怎么看这个茎叶图?

茎叶图其实是一种很形象的图示,下面告诉诸位怎么看茎叶图。简单的一句话解释就是:多少频数就代表多少(叶子+茎)。下面举一个例子来看。比如下图的数据:

其含义代表充值额2.5元的有三例,充值额2.8有两例,共计5例。

此外还有标准和趋势QQ图,用于从图形的角度来分析数据是否呈现正态分布。

首先来看标准QQ图,如果服从正态分布,则散点分布是接近于一条直线的,形式如下:

然而在本类中,我们看到流失玩家和活跃玩家的充值金额QQ图如下:

可以看到是不符合正态分布的。同样的我们看到的趋势QQ图则也是要分布在直线周围才是正态分布,而在下面的趋势QQ图中,却不是这样的情况。

最后还有一个图,就是箱线图,有关箱线图的解释和分析,已经在以前的文章中有所阐述,可翻阅(http://www.cnblogs.com/yuyang-DataAnalysis/archive/2012/03/08/2385874.html)。

这里简单的再说一句,矩形框的部分是箱线图的主体,上中下三线代表75%,50%,25%的百分位数。

纵向的直线叫做触须线,上截止到变量本体的最大值,下截止到变量本体的最小值。所谓本体即除奇异值以外 的变量值叫做本体值。

奇异值,用0作为标记,分大小两种,箱体上方用0标记,变量值超过第75分位与25分位数的变量差的1.5倍。箱体下方则表示小于这个1.5倍。

极值,用*表示,箱体上方是超过变量差值的3倍(75分位和25分位之差),箱体下方同理。

按照上述的叙述,可以看看我们所分析的数据的具体情况,这里不再累述了。

以上结合了一些教材把探索性分析的基本操作讲述了一遍,作为探索性分析这只是我们作为更深入分析的一个前奏过程,但是这里却不能忽略其价值,比如怎么看茎叶图,箱线图,正态分布检验等等,在网游行业的应用其实也有很多,比如今天提到的不同生命周期玩家的充值的探索性分析,还有比如付费与非付费玩家的等级成长探索分析,不同服务器,不同渠道,不同充值平台之间的玩家的探索分析,这些虽然看似简单,但是都是值得去做和慢慢研究的。

参考

http://www.docin.com/p-276172171.html

陈胜可著SPSS统计分析从入门到精通

时间: 2024-11-05 21:40:11

小白学数据分析----->SPSS探索分析实践操作[不同生命周期玩家的充值探索分析]的相关文章

小白学数据分析-----&gt;付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析------&gt;日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析-----&gt;数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析-------&gt;相关分析在充值与购买失衡分析的应用探索

昨天简单的说过充值记录的分析方法,今天介绍一下使用相关分析,说说充值与购买的数据相关分析.在很多类型的游戏中,我们经常会做累计充值活动,然而并不是所有的累计充值活动都做的很好,而且某些类型的游戏不适合频繁作累计充值活动,究其原因,其中之一就是会造成充值与购买的失衡,通俗的说就是会存在持币待购的情况,我们希望正常或者良性的循环是充值购买为1:1,这点对于平衡消费,稳定消费结构很重要,当然了实际运营中我们也会面临很多的突发因素,比如游戏内容调整,游戏数值调整,版本IB刺激等等.但是如果出现持币待购也

小白学数据分析-----&gt; 利用SPSS对DAU/MAU进行比率分析

最近在看几个数据分析平台的数据,基本上都有DAU/MAU这个指标,这个指标很早之前就在社交游戏平台得以广泛使用,对于这个指标的一些解析,以前有写过,今天换个角度,通过比率分析来具体的分析一下这个DAU/MAU.或许从中你会得到一些其他的信息. DAU/MAU的传统分析与局限性 首先,我们来看一下这个图: 此图总结的是2011年12月25日到2012年9月19日的DAU/MAU的比值曲线图,可以看到初期的的变化比较剧烈,这点是因为刚刚开始测试,初期的DAU导入速度比MAU导入速度更快一些,因此此时

小白学数据分析------&gt;把握分析标准与敏感度

写在正文之前,想说几句话,今天是2012年3月16日,是我开博客以来的第9个月,9个月让我成长的非常迅速,这期间我收获了很多东西,认识了很多人,开了群,见了网站,持续的写博,从来没想到我的博客会有这么大的作用,从来没有SEO,从来没推广,从来没有任何宣传,我想到和我做的就是把我自己的成长纪录下来,把网游数据分析的点滴分享出来,当然我希望有人看,但是我毕竟不是高手,只是一个小白,小白只能是学习心得的纪录和整理,帮助自己理顺思路,很希望自己的文章有人看,因为那样就会有高手帮助我指点问题.今天 博客9

小白学数据分析之关联分析理论篇

关联分析的学习 在说关联分析之前,先说说自己这段时间的一些感受吧,这段时间相对轻松一些,有一些时间自己自己来学习一些新东西和知识,然而却发现捧着一本数据挖掘理论的书籍在一点一点的研读实在是很漫长,而且看过了没有什么感觉.数据这一行理论很多,算法很多,模型很多,自己现在一直是结合业务来做的数据分析与挖掘,相比电商而言,游戏业做的数据大多很糙,但是仅仅结合业务和运营,更加注重我们客户的质量和维护,当然这不是说电商没做,实际上电商一直在做,然而最近一次经历发现,我们过多的时候去讨论了算法,模型,新理论

小白学数据分析-------&gt;充值记录分析

   充值记录分析的方法有很多种,维度很多,今天就说说一个比较初级的分析方法,希望对于各位有一定的帮助和指导. 首先来看一下充值记录的格式,一般而言我们取到的数据都是交易格式(什么事交易格式这里不说了,大家应该都了解) 账户 充值额 充值大区 充值时间 1 100 A 2012-4-9 1 25 A 2012-4-7 2 50 A 2012-4-9 3 4 4 100 200 50 A A B 2012-4-5 2012-4-2 2012-4-1                     以上为我

小白学数据分析-----&gt;首次购买记录分析方法

最近几天比较忙,大家都在问如何建立比较完整和有效的数据分析平台,说实话这个问题我考虑了很久,有效并有深度得数据挖掘与分析平台对于游戏产品的质量改善,人气.收益的提升,玩家资源的保有 ,客群分析非常有必要.众多经分系统的好处不在此处解释,且看今天讨论的内容,首次购买记录分析. 在如今道具收费的免费游戏中,首次购买记录的分析发挥着巨大的作用,这与电商的购买不太一样,还是存在很大的区别.道具收费的游戏中,道具购买是我们收益的主体,如何对于道具购买的分析是非常重要的一环. 由于道具收费的免费游戏,玩家存