[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.1 引言

1.  实际的流体与理想流体的主要区别在于: 前者具有粘性 (内摩擦) 和热传导.

 

 

2.  内摩擦

 

 

(1)  当两层流体有相对运动时, 方有摩擦力; 它是一种内力; 单位面积上所受的内力称为应力; 而它通常与表面相切, 而称为切应力.

 

 

(2)  Newton 假设摩擦力与速度梯度成正比; 满足此假设的称为 Newton 流体; 而不满足的称为非 Newton 流体.

 

 

3.  热传导

 

 

(1)  Fourier 实验定律: $$\bex \rd q=-\kappa\cfrac{\p T}{\p n}\rd S =-\kappa \n T\cdot{\bf n}\rd S, \eex$$ 称 $\kappa$ 为导热系数, $-\kappa \n T$ 为热量流密度向量.

时间: 2024-10-15 07:30:44

[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.1 引言的相关文章

[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程

1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力.     2.  由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\se

[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组

粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u}}{\rd t} +\n p -\n\sez{ \sex{\mu'-\cfrac{2}{3}\mu}\Div{\bf u} } -2\Div(\mu {\bf S})&=\rho {\bf F},\\ \rho\cfrac{\rd e}{\rd t} +p\Div{\bf u} -\mu\sum_{

[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.6 一维粘性热传导流体动力学方程组

一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sez{\sex{\cfrac{4\mu}{3}+\mu'}\cfrac{\p u}{\p x}}&=F,\\

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组

1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$   2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构

1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.     2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&

[物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.4 一维粘性热传导流体力学方程组的 Lagrange 形式

1. 一维粘性热传导流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sez{\sex{\cfrac{4\mu}{3}+\mu'}\cfrac{\p u}{\p x}}&=F,\\

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识

1.  理想流体: 指忽略粘性及热传导的流体.   2.  流体的状态 (运动状态及热力学状态) 的描述   (1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度.   (2)   质量密度 $\rho$: 单位体积流体的质量. a.  质量流向量 (动量密度向量) $\rho\bbu$; b.  动量流张量 $\rho \bbu\otimes \bbu$; c.  比容 $\tau=\cfrac{1}{\rho}$: 单位质量流体的体积.   (3)   压

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组

1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rh

[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\gamma,\quad e=e^\frac{S-S_0}{c_V}\rho^{\gamma-1}\ra p=(\gamma-1)\rho e =(\gamma-1)\rho (E-Zg_0). \eex$$