10183 - How Many Fibs?
Time limit: 3.000 seconds
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=115&page=show_problem&problem=1124
Recall the definition of the Fibonacci numbers:
f1 := 1
f2 := 2
fn := fn-1 + fn-2 (n>=3)
Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a,b].
Input Specification
The input contains several test cases. Each test case consists of two non-negative integer numbers a and b. Input is terminated by a=b=0. Otherwise, a<=b<=10100. The numbers a and b are given with no superfluous leading zeros.
Output Specification
For each test case output on a single line the number of Fibonacci numbers fi with a<=fi<=b.
Sample Input
10 100
1234567890 9876543210
0 0
Sample Output
5
4
先打表,再从头开始枚举判断即可。
完整代码:
/*0.016s*/ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn = 105;///注意此值的设置要留意中间结果 char numstr[maxn], numstr2[maxn]; ///输入输出接口 struct bign { int len, s[maxn]; bign() { memset(s, 0, sizeof(s)); len = 1; } bign(int num) { *this = num; } bign(const char* num) { *this = num; } bign operator = (const int num) { char s[maxn]; sprintf(s, "%d", num); *this = s; return *this; } bign operator = (const char* num) { len = strlen(num); for (int i = 0; i < len; i++) s[i] = num[len - i - 1] & 15; return *this; } ///输出 const char* str() const { if (len) { for (int i = 0; i < len; i++) numstr[i] = '0' + s[len - i - 1]; numstr[len] = '\0'; } else strcpy(numstr, "0"); return numstr; } ///去前导零 void clean() { while (len > 1 && !s[len - 1]) len--; } ///加 bign operator + (const bign& b) const { bign c; c.len = 0; for (int i = 0, g = 0; g || i < max(len, b.len); i++) { int x = g; if (i < len) x += s[i]; if (i < b.len) x += b.s[i]; c.s[c.len++] = x % 10; g = x / 10; } return c; } ///减 bign operator - (const bign& b) const { bign c; c.len = 0; for (int i = 0, g = 0; i < len; i++) { int x = s[i] - g; if (i < b.len) x -= b.s[i]; if (x >= 0) g = 0; else { g = 1; x += 10; } c.s[c.len++] = x; } c.clean(); return c; } ///乘 bign operator * (const bign& b) const { bign c; c.len = len + b.len; for (int i = 0; i < len; i++) for (int j = 0; j < b.len; j++) c.s[i + j] += s[i] * b.s[j]; for (int i = 0; i < c.len - 1; i++) { c.s[i + 1] += c.s[i] / 10; c.s[i] %= 10; } c.clean(); return c; } ///除 bign operator / (const bign &b) const { bign ret, cur = 0; ret.len = len; for (int i = len - 1; i >= 0; i--) { cur = cur * 10; cur.s[0] = s[i]; while (cur >= b) { cur -= b; ret.s[i]++; } } ret.clean(); return ret; } ///模、余 bign operator % (const bign &b) const { bign c = *this / b; return *this - c * b; } bool operator < (const bign& b) const { if (len != b.len) return len < b.len; for (int i = len - 1; i >= 0; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) const { return !(b < *this); } bool operator >= (const bign &b) const { return !(*this < b); } bool operator != (const bign &b) const { return b < *this || *this < b; } bool operator == (const bign& b) const { return !(b < *this) && !(*this < b); } bign operator += (const bign &a) { *this = *this + a; return *this; } bign operator -= (const bign &a) { *this = *this - a; return *this; } bign operator *= (const bign &a) { *this = *this * a; return *this; } bign operator /= (const bign &a) { *this = *this / a; return *this; } bign operator %= (const bign &a) { *this = *this % a; return *this; } }; bign f[500] = {1, 1}; int main() { bign a, b; int i, j; for (i = 2; i < 500; ++i) f[i] = f[i - 1] + f[i - 2]; while (scanf("%s%s", numstr, numstr2), a = numstr, b = numstr2, b != 0) { i = 1; while (f[i++] < a) ; --i; j = i; while (f[j++] <= b) ; printf("%d\n", j - i - 1); } return 0; }
查看本栏目更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/
/*0.372s*/ import java.io.*; import java.util.*; import java.math.*; public class Main { static final int maxn = 500; static Scanner cin = new Scanner(new BufferedInputStream(System.in)); public static void main(String[] args) { BigInteger[] f = new BigInteger[maxn]; f[1] = BigInteger.ONE; f[2] = new BigInteger("2"); for (int i = 3; i < maxn; ++i) f[i] = f[i - 1].add(f[i - 2]); while (true) { BigInteger a = cin.nextBigInteger(), b = cin.nextBigInteger(); if (b.compareTo(BigInteger.ZERO) == 0) break; int i = 1; while (f[i++].compareTo(a) < 0) ; --i; int j = i; while (f[j++].compareTo(b) < 1) ; System.out.println(j - i - 1); } } }
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索斐波那契数列
, return
, this
, const
, numbers
, 斐波那契
, bool
, const auto&amp;
, operator
斐波那契数
how many fibs pascal、function fibs、10183学校代码、乐高10183、gb10183,以便于您获取更多的相关知识。