协同过滤算法 R/mapreduce/spark mllib多语言实现

用户电影评分数据集下载

http://grouplens.org/datasets/movielens/

1) Item-Based,非个性化的,每个人看到的都一样

2) User-Based,个性化的,每个人看到的不一样

对用户的行为分析得到用户的喜好后,可以根据用户的喜好计算相似用户和物品,然后可以基于相似用户或物品进行推荐。这就是协同过滤中的两个分支了,基于用户的和基于物品的协同过滤。

在计算用户之间的相似度时,是将一个用户对所有物品的偏好作为一个向量,而在计算物品之间的相似度时,是将所有用户对某个物品的偏好作为一个向量。求出相似度后,接下来可以求相似邻居了。

3)基于模型(ModelCF)

        按照模型,可以分为:

        1)最近邻模型:基于距离的协同过滤算法

       2)Latent Factor Mode(SVD):基于矩阵分解的模型

       3)Graph:图模型,社会网络图模型

适用场景

     对于一个在线网站,用户的数量往往超过物品的数量,同时物品数据相对稳定,因此计算物品的相似度不但

     计算量小,同时不必频繁更新。但是这种情况只适用于电子商务类型的网站,像新闻类,博客等这类网站的

     系统推荐,情况往往是相反的,物品数量是海量的,而且频繁更新。

r语言实现基于物品的协同过滤算法

    
  

  #引用plyr包
    library(plyr)
    #读取数据集
    train<-read.table(file="C:/users/Administrator/Desktop/u.data",sep=" ")
    train<-train[1:3]
    
    names(train)<-c("user","item","pref")
    
    #计算用户列表方法
    usersUnique<-function(){
      users<-unique(train$user)
      users[order(users)]
    }
    
    
    #计算商品列表方法
    itemsUnique<-function(){
      items<-unique(train$item)
      items[order(items)]
    }
    
    # 用户列表
    users<-usersUnique()
    # 商品列表
    items<-itemsUnique() 
    #建立商品列表索引
    index<-function(x) which(items %in% x)
    data<-ddply(train,.(user,item,pref),summarize,idx=index(item)) 
    
    #同现矩阵
    cooccurrence<-function(data){
      n<-length(items)
      co<-matrix(rep(0,n*n),nrow=n)
      for(u in users){
    idx<-index(data$item[which(data$user==u)])
    m<-merge(idx,idx)
    for(i in 1:nrow(m)){
      co[m$x[i],m$y[i]]=co[m$x[i],m$y[i]]+1
    }
      }
      return(co)
    }
    
    #推荐算法
    recommend<-function(udata=udata,co=coMatrix,num=0){
      n<-length(items)
      
      # all of pref
      pref<-rep(0,n)
      pref[udata$idx]<-udata$pref
      
      # 用户评分矩阵
      userx<-matrix(pref,nrow=n)
      
      # 同现矩阵*评分矩阵
      r<-co %*% userx
      
      # 推荐结果排序 
      # 把该用户评分过的商品的推荐值设为0
      r[udata$idx]<-0
      idx<-order(r,decreasing=TRUE)
      topn<-data.frame(user=rep(udata$user[1],length(idx)),item=items[idx],val=r[idx])
      topn<-topn[which(topn$val>0),]
      
      # 推荐结果取前num个
      if(num>0){
    topn<-head(topn,num)
      }
      
      #返回结果
      return(topn)
    }
    
    #生成同现矩阵
    co<-cooccurrence(data) 
    #计算推荐结果
    recommendation<-data.frame()
    for(i in 1:length(users)){
      udata<-data[which(data$user==users[i]),]
      recommendation<-rbind(recommendation,recommend(udata,co,0)) 
    }

mareduce 实现

参考文章:

http://www.cnblogs.com/anny-1980/articles/3519555.html

代码下载

https://github.com/bsspirit/maven_hadoop_template/releases/tag/recommend

spark ALS实现

Spark mllib里用的是矩阵分解的协同过滤,不是UserBase也不是ItemBase。

参考文章:

http://www.mamicode.com/info-detail-865258.html


import org.apache.spark.SparkConf
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd._
import org.apache.spark.SparkContext
import scala.io.Source

object MovieLensALS {

  def main(args:Array[String]) {

    //设置运行环境

    val sparkConf = new SparkConf().setAppName("MovieLensALS").setMaster("local[5]")

    val sc = new SparkContext(sparkConf)

    //装载用户评分,该评分由评分器生成(即生成文件personalRatings.txt)

    val myRatings = loadRatings(args(1))

    val myRatingsRDD = sc.parallelize(myRatings, 1)

    //样本数据目录

    val movielensHomeDir = args(0)

    //装载样本评分数据,其中最后一列Timestamp取除10的余数作为key,Rating为值,即(Int,Rating)

    val ratings = sc.textFile(movielensHomeDir + "/ratings.dat").map {

      line =>

        val fields = line.split("::")

        // format: (timestamp % 10, Rating(userId, movieId, rating))

        (fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))

    }

    //装载电影目录对照表(电影ID->电影标题)

    val movies = sc.textFile(movielensHomeDir + "/movies.dat").map {

      line =>

        val fields = line.split("::")

        // format: (movieId, movieName)

        (fields(0).toInt, fields(1))

    }.collect().toMap

    //统计有用户数量和电影数量以及用户对电影的评分数目

    val numRatings = ratings.count()

    val numUsers = ratings.map(_._2.user).distinct().count()

    val numMovies = ratings.map(_._2.product).distinct().count()

    println("Got " + numRatings + " ratings from " + numUsers + " users " + numMovies + " movies")

    //将样本评分表以key值切分成3个部分,分别用于训练 (60%,并加入用户评分), 校验 (20%), and 测试 (20%)

    //该数据在计算过程中要多次应用到,所以cache到内存

    val numPartitions = 4

    val training = ratings.filter(x => x._1 < 6).values.union(myRatingsRDD).repartition(numPartitions).persist()

    val validation = ratings.filter(x => x._1 >= 6 && x._1 < 8).values.repartition(numPartitions).persist()

    val test = ratings.filter(x => x._1 >= 8).values.persist()

    val numTraining = training.count()

    val numValidation = validation.count()

    val numTest = test.count()

    println("Training: " + numTraining + " validation: " + numValidation + " test: " + numTest)

    //训练不同参数下的模型,并在校验集中验证,获取最佳参数下的模型

    val ranks = List(8, 12)

    val lambdas = List(0.1, 10.0)

    val numIters = List(10, 20)

    var bestModel: Option[MatrixFactorizationModel] = None

    var bestValidationRmse = Double.MaxValue

    var bestRank = 0

    var bestLambda = -1.0

    var bestNumIter = -1

    for (rank <- ranks; lambda <- lambdas; numIter <- numIters) {

      val model = ALS.train(training, rank, numIter, lambda)

      val validationRmse = computeRmse(model, validation, numValidation)

      println("RMSE(validation) = " + validationRmse + " for the model trained with rank = "

        + rank + ",lambda = " + lambda + ",and numIter = " + numIter + ".")

      if (validationRmse < bestValidationRmse) {

        bestModel = Some(model)

        bestValidationRmse = validationRmse

        bestRank = rank

        bestLambda = lambda

        bestNumIter = numIter

      }

    }

    //用最佳模型预测测试集的评分,并计算和实际评分之间的均方根误差(RMSE)

    val testRmse = computeRmse(bestModel.get, test, numTest)

    println("The best model was trained with rank = " + bestRank + " and lambda = " + bestLambda

      + ", and numIter = " + bestNumIter + ", and its RMSE on the test set is " + testRmse + ".")

    //create a naive baseline and compare it with the best model

    val meanRating = training.union(validation).map(_.rating).mean()

    val baselineRmse = math.sqrt(test.map(x => (meanRating - x.rating) * (meanRating - x.rating)).reduce(_ + _) / numTest)

    val improvement = (baselineRmse - testRmse) / baselineRmse * 100

    println("The best model improves the baseline by " + "%1.2f".format(improvement) + "%.")

    //推荐前十部最感兴趣的电影,注意要剔除用户已经评分的电影

    val myRatedMovieIds = myRatings.map(_.product).toSet

    val candidates = sc.parallelize(movies.keys.filter(!myRatedMovieIds.contains(_)).toSeq)

    val recommendations = bestModel.get

      .predict(candidates.map((0, _)))

      .collect()

      .sortBy(-_.rating)

      .take(10)

    var i = 1

    println("Movies recommended for you:")

    recommendations.foreach { r =>

      println("%2d".format(i) + ": " + movies(r.product))

      i += 1

    }

    sc.stop()

  }

  /** 校验集预测数据和实际数据之间的均方根误差 **/

  def computeRmse(model:MatrixFactorizationModel,data:RDD[Rating],n:Long):Double = {

    val predictions:RDD[Rating] = model.predict(data.map(x => (x.user,x.product)))

    val predictionsAndRatings = predictions.map{ x =>((x.user,x.product),x.rating)}

      .join(data.map(x => ((x.user,x.product),x.rating))).values

    math.sqrt(predictionsAndRatings.map( x => (x._1 - x._2) * (x._1 - x._2)).reduce(_+_)/n)

  }

  /** 装载用户评分文件 personalRatings.txt **/

  def loadRatings(path:String):Seq[Rating] = {

    val lines = Source.fromFile(path).getLines()

    val ratings = lines.map{

      line =>

        val fields = line.split("::")

        Rating(fields(0).toInt,fields(1).toInt,fields(2).toDouble)

    }.filter(_.rating > 0.0)

    if(ratings.isEmpty){

      sys.error("No ratings provided.")

    }else{

      ratings.toSeq

    }

  }

}

参考文章:

http://blog.csdn.net/acdreamers/article/details/44672305

http://www.cnblogs.com/technology/p/4467895.html

http://blog.fens.me/rhadoop-mapreduce-rmr/

本文出自 “点滴积累” 博客,请务必保留此出处http://tianxingzhe.blog.51cto.com/3390077/1710048

时间: 2024-11-02 13:26:15

协同过滤算法 R/mapreduce/spark mllib多语言实现的相关文章

《R的极客理想——高级开发篇 A》一一2.1 用R重写Mahout协同过滤算法

2.1 用R重写Mahout协同过滤算法 问题 如何用R语言实现推荐算法? 引言 推荐系统在互联网应用中很常见,比如亚马逊为你推荐购书列表,豆瓣为你推荐电影列表.Mahout是Hahoop家族用于机器学习的分步式计算框架,主要包括三类算法,即推荐算法.聚类算法和分类算法.本节将用R语言来重写推荐部分的基于用户的协同过滤算法.用R语言重写Mahout的基于用户的协同过滤推荐算法,将完全按照Mahout的思路和设计进行实现,并与Mahout的计算结果进行对比.2.1.1 Mahout的推荐算法模型

探秘推荐引擎之协同过滤算法小综述

      数学大神.统计学大神和数据挖掘推荐大神请关注. 一.数学期望的理解       早些时候,法国有两个大数学家,一个叫做布莱士·帕斯卡,一个叫做费马.帕斯卡认识两个赌徒,这两个赌徒向他提出了一个问题.他们说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金.赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了.那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这两种分法都不

C#实现协同过滤算法的实例代码

这篇文章介绍了C#实现协同过滤算法的实例代码,有需要的朋友可以参考一下   复制代码 代码如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace SlopeOne {     public class Rating     {         public float Value { get; set; }         public int Freq

有关基于项目的协同过滤算法的预测值计算问题

问题描述 有关基于项目的协同过滤算法的预测值计算问题 有个疑问,比如项目有100个最近邻居,但是目标用户对这100个邻居中的极少部分有评分,比如只对5个项目有评分,但是大部分论文中计算预测值时是这么计算的:,我将未评分值先简单置为0,那么分母就是所有相似度之和,分子却只是那5个目标用户有评分项的加权和,结果通常很小,与实际值相差很大,我想那个分母是不是只用包括最近邻居中用户已评分项的相似度? 解决方案 我刚计算预测值时分母只累加了已评分项的相似度,邻居300左右时MAE值达到最优值为0.75,正

基于物品的协同过滤算法(ItemCF)

最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法-基于物品的协同过滤算法. ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通过分析用户的行为记录来计算用户的相似度.该算法认为物品A和物品B相似的依据是因为喜欢物品A的用户也喜欢物品B. 基于物品的协同过滤算法实现步骤: 1.计算物品之间的相似度 2.根据物品的相似度和用户的历史行为记录给用户生成推荐列表 下面我们一起来看一下这两部是如何实现的: 一.计算物品之间的相似度

解决-求大神勾搭,关于mahout协同过滤算法的问题,不胜感激

问题描述 求大神勾搭,关于mahout协同过滤算法的问题,不胜感激 dd求大神帮忙解决mahout的协同过滤算法问题,老是报错,没办法解决,求指点

协同过滤算法-k最近邻协同过滤中,k值如何确定?

问题描述 k最近邻协同过滤中,k值如何确定? k最近邻协同过滤算法中,如何确定用户最合适的邻居集大小,也就是k.

急需要协同过滤算法的源码

问题描述 急需要协同过滤算法的源码,555555,找了好久,还是没找到,好心人帮帮忙呀~~~~

代码-如何重现经典协同过滤算法?

问题描述 如何重现经典协同过滤算法? 自己的协同过滤论文要与一些经典的协同过滤算法比较,现在纠结如何重现别人的代码用于结果比较?求大神指路 解决方案 重现别人的代码,要不找到别人的代码,要不自己模仿别人的写一段代码. 难道还有别的方式?当然做假另当别论. 解决方案二: 你自己把代码写出来 然后模拟不就好了?